题目内容
13.在△ABC中角A,B,C所对的边分别是a,b,c,b=$\sqrt{2}$,c=1,cosB=$\frac{3}{4}$.(1)求sinC的值;
(2)求△ABC的面积.
分析 (1)利用同角三角函数基本关系式可求sinB,由正弦定理可得sinC的值.
(2)由c<b,可得C为锐角,由(1)可得cosC,利用两角和的正弦函数公式可求sinA的值,利用三角形面积公式即可得解.
解答 (本题满分为12分)
解:(1)∵b=$\sqrt{2}$,c=1,cosB=$\frac{3}{4}$.
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{7}}{4}$,
∴由正弦定理可得:sinC=$\frac{csinB}{b}$=$\frac{1×\frac{\sqrt{7}}{4}}{\sqrt{2}}$=$\frac{\sqrt{14}}{8}$…4分
(2)∵c<b,C为锐角,
∴由(1)可得:cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{5\sqrt{2}}{8}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{7}}{4}$×$\frac{5\sqrt{2}}{8}$+$\frac{3}{4}$×$\frac{\sqrt{14}}{8}$=$\frac{\sqrt{14}}{4}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\sqrt{2}×1×$$\frac{\sqrt{14}}{4}$=$\frac{\sqrt{7}}{4}$…12分
点评 本题主要考查了同角三角函数基本关系式,正弦定理,两角和的正弦函数公式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
练习册系列答案
相关题目
4.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
| A. | 2 | B. | -2 | C. | -98 | D. | 98 |
8.已知四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,又AB=3,BC=2,BD=4,且∠CBD=60°,则球O的表面积为( )
| A. | 12π | B. | 16π | C. | 20π | D. | 25π |
5.已知函数f(x)=$\left\{\begin{array}{l}{|log_2x|,0<x<2}\\{cos(\frac{π}{2}-\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则x1x2(x3-1)(x4-1)的取值范围是( )
| A. | ∅ | B. | (9,21) | C. | (21,25) | D. | (9,25) |
3.已知圆C:(x-1)2+(y-2)2=2截y轴所得线段与截直线y=2x+b所得线段的长度相等,则b=( )
| A. | $-\sqrt{6}$ | B. | ±$\sqrt{6}$ | C. | $-\sqrt{5}$ | D. | ±$\sqrt{5}$ |