ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{3¦Ð}{4}$£¬|$\overrightarrow{a}$|=$\sqrt{2}$£¬|$\overrightarrow{b}$|=2£¬Ôò$\overrightarrow{a}$•£¨$\overrightarrow{a}$-2$\overrightarrow{b}$£©=6£®·ÖÎö Çó³ö$\overrightarrow{a}$2ºÍ$\overrightarrow{a}•\overrightarrow{b}$£¬½«$\overrightarrow{a}$•£¨$\overrightarrow{a}$-2$\overrightarrow{b}$£©Õ¹¿ªµÃ³ö´ð°¸£®
½â´ð ½â£º$\overrightarrow{a}•\overrightarrow{b}$=$\sqrt{2}¡Á2¡Ácos\frac{3¦Ð}{4}$=-2£¬$\overrightarrow{a}$2=|$\overrightarrow{a}$|2=2£¬
¡à$\overrightarrow{a}$•£¨$\overrightarrow{a}$-2$\overrightarrow{b}$£©=$\overrightarrow{a}$2-2$\overrightarrow{a}•\overrightarrow{b}$=2+2¡Á2=6£®
¹Ê´ð°¸Îª£º6£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÒÑÖªiΪÐéÊýµ¥Î»£¬¸´Êý$\frac{2+4i}{i}$=£¨¡¡¡¡£©
| A£® | 4-2i | B£® | 4+2i | C£® | -4-2i | D£® | -4+2i |
10£®É躯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒ¶ÔÈÎÒâµÄx¡ÊR£¬¶¼ÓÐf£¨x+2£©=f£¨x£©£®µ±-1¡Üx¡Ü0ʱ£¬f£¨x£©=-x2£¬ÈôÖ±Ïßy=-x+mÓ뺯Êýy=f£¨x£©µÄͼÏóÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
| A£® | 2k-$\frac{1}{4}$£¨k¡ÊZ£© | B£® | 2k+$\frac{1}{4}$£¨k¡ÊZ£© | C£® | 2k»ò2k-$\frac{1}{4}$£¨k¡ÊZ£© | D£® | 2k»ò2k+$\frac{1}{4}$£¨k¡ÊZ£© |
7£®2015Äê¸ßÖÐÉú¼¼ÄÜ´óÈüÖÐÈýËùѧУ·Ö±ðÓÐ3Ãû¡¢2Ãû¡¢1ÃûѧÉú»ñ½±£¬Õâ6ÃûѧÉúÒªÅųÉÒ»ÅźÏÓ°£¬ÔòͬУѧÉúÅÅÔÚÒ»ÆðµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1}{30}$ | B£® | $\frac{1}{15}$ | C£® | $\frac{1}{10}$ | D£® | $\frac{1}{5}$ |
11£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ý£¨¡¡¡¡£©
| A£® | 6 | B£® | $6+2\sqrt{3}$ | C£® | $8+8\sqrt{2}$ | D£® | $4+4\sqrt{2}$ |