ÌâÄ¿ÄÚÈÝ
ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn=-n2£¬ÊýÁÐ{bn}Âú×㣺b1=2£¬bn+1=3bn-t£¨n-1£©£¬ÒÑÖªan+1+bn+1=3£¨an+bn£©¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢
£¨1£©ÇótµÄÖµ£»
£¨2£©ÉèÊýÁÐ{an2+anbn}µÄǰnÏîµÄºÍΪTn£¬ÎÊÊÇ·ñ´æÔÚ»¥²»ÏàµÈµÄÕýÕûÊým£¬k£¬r£¬Ê¹µÃm£¬k£¬r³ÉµÈ²îÊýÁУ¬ÇÒTm+1£¬Tk+1£¬Tr+1³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öm£¬k£¬r£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©ÇótµÄÖµ£»
£¨2£©ÉèÊýÁÐ{an2+anbn}µÄǰnÏîµÄºÍΪTn£¬ÎÊÊÇ·ñ´æÔÚ»¥²»ÏàµÈµÄÕýÕûÊým£¬k£¬r£¬Ê¹µÃm£¬k£¬r³ÉµÈ²îÊýÁУ¬ÇÒTm+1£¬Tk+1£¬Tr+1³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öm£¬k£¬r£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÇóºÍ,µÈ±È¹ØÏµµÄÈ·¶¨
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓù«Ê½µ±n¡Ý2ʱ£¬an=sn-sn-1¼´¿ÉÇóµÃan£¬ÓÉan+1+bn+1=3£¨an+bn£©¿ÉµÃÊýÁÐ{an+bn}ÊǵȱÈÊýÁУ¬½ø¶øÇóµÃbn£¬
ÔÙÓÉbn+1=3bn-t£¨n-1£©£¬¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬¼´¿ÉÇóµÃtÖµ£»
£¨2£©ÀûÓ÷´Ö¤·¨£¬½áºÏµÈ±ÈÊýÁеÄÐÔÖʼ°ÊýÁÐÇóºÍ·½·¨´íλÏà¼õ·¨¼´¿ÉµÃ³ö½áÂÛ£®
ÔÙÓÉbn+1=3bn-t£¨n-1£©£¬¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬¼´¿ÉÇóµÃtÖµ£»
£¨2£©ÀûÓ÷´Ö¤·¨£¬½áºÏµÈ±ÈÊýÁеÄÐÔÖʼ°ÊýÁÐÇóºÍ·½·¨´íλÏà¼õ·¨¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º
½â£º£¨1£©µ±n¡Ý2ʱ£¬an=sn-sn-1=-n2+£¨n-1£©2=1-2n£¬
µ±n=1ʱ£¬a1=s1=-1£¬Âú×ãÉÏʽ£¬
¡àan=1-2n£¨n¡ÊN*£©
ÓÖ¡ßan+1+bn+1=3£¨an+bn£©¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬b1=2£¬
¡àa1+b1=£¨1-2£©+2=1£¬
¡àan+bn¡Ù0£¬¡à
=3£¬
¡àÊýÁÐ{an+bn}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ3µÄµÈ±ÈÊýÁУ¬
¡àan+bn=3n-1£¬¡àbn=3n-1-£¨1-2n£©=3n-1+2n-1£¬
¡ßbn+1=3bn-t£¨n-1£©£¬
¡à3n+2n+1=3£¨3n-1+2n-1£©-t£¨n-1£©£¬
¡à£¨t-4£©£¨n-1£©=0¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬
¡àt=4£®
£¨2£©ÓÉ£¨1£©µÃan2+anbn=an£¨an+bn£©=£¨1-2n£©•3n-1£¬
¡àTn=-1-3¡Á3-5¡Á32-7¡Á33-¡-£¨2n-1£©•3n-1£¬¢Ù
3Tn=-1¡Á3-3¡Á32-5¡Á33-¡-£¨2n-1£©•3n£¬¢Ú
¢Ú-¢ÙµÃ£¬
2Tn=1+2£¨3+32+¡+3n-1£©-£¨2n-1£©•3n
=1+2¡Á
-£¨2n-1£©•3n=2£¨1-n£©•3n-2£¬
¡àTn=£¨1-n£©•3n-1£¬
¡àTn+1=£¨1-n£©•3n£®
¡àÈô´æÔÚ»¥²»ÏàµÈµÄÕýÕûÊým£¬k£¬r£¬Ê¹µÃm£¬k£¬r³ÉµÈ²îÊýÁУ¬ÇÒTm+1£¬Tk+1£¬Tr+1³ÉµÈ±ÈÊýÁУ¬
Ôò£¨Tk+1£©2=£¨Tm+1£©£¨Tr+1£©¼´£¨1-k£©2•32k=£¨1-m£©£¨1-r£©£¬¼´k2-2k+1=mr-£¨m+r£©+1£¬
¡àk2=mr¼´£¨
£©2=mr£¬¼´£¨m-r£©2=0£¬¡àm=r£¬
ÕâÓëm¡ÙrÏàì¶Ü£¬
¡à²»´æÔÚÂú×ãÌõ¼þµÄÕýÕûÊým£¬k£¬r£®
µ±n=1ʱ£¬a1=s1=-1£¬Âú×ãÉÏʽ£¬
¡àan=1-2n£¨n¡ÊN*£©
ÓÖ¡ßan+1+bn+1=3£¨an+bn£©¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬b1=2£¬
¡àa1+b1=£¨1-2£©+2=1£¬
¡àan+bn¡Ù0£¬¡à
| an+1+bn+1 |
| an+bn |
¡àÊýÁÐ{an+bn}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ3µÄµÈ±ÈÊýÁУ¬
¡àan+bn=3n-1£¬¡àbn=3n-1-£¨1-2n£©=3n-1+2n-1£¬
¡ßbn+1=3bn-t£¨n-1£©£¬
¡à3n+2n+1=3£¨3n-1+2n-1£©-t£¨n-1£©£¬
¡à£¨t-4£©£¨n-1£©=0¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬
¡àt=4£®
£¨2£©ÓÉ£¨1£©µÃan2+anbn=an£¨an+bn£©=£¨1-2n£©•3n-1£¬
¡àTn=-1-3¡Á3-5¡Á32-7¡Á33-¡-£¨2n-1£©•3n-1£¬¢Ù
3Tn=-1¡Á3-3¡Á32-5¡Á33-¡-£¨2n-1£©•3n£¬¢Ú
¢Ú-¢ÙµÃ£¬
2Tn=1+2£¨3+32+¡+3n-1£©-£¨2n-1£©•3n
=1+2¡Á
| 3-3n |
| 1-3 |
¡àTn=£¨1-n£©•3n-1£¬
¡àTn+1=£¨1-n£©•3n£®
¡àÈô´æÔÚ»¥²»ÏàµÈµÄÕýÕûÊým£¬k£¬r£¬Ê¹µÃm£¬k£¬r³ÉµÈ²îÊýÁУ¬ÇÒTm+1£¬Tk+1£¬Tr+1³ÉµÈ±ÈÊýÁУ¬
Ôò£¨Tk+1£©2=£¨Tm+1£©£¨Tr+1£©¼´£¨1-k£©2•32k=£¨1-m£©£¨1-r£©£¬¼´k2-2k+1=mr-£¨m+r£©+1£¬
¡àk2=mr¼´£¨
| m+r |
| 2 |
ÕâÓëm¡ÙrÏàì¶Ü£¬
¡à²»´æÔÚÂú×ãÌõ¼þµÄÕýÕûÊým£¬k£¬r£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýÁÐͨÏʽ¼°ÊýÁÐǰnÏîºÍµÄÇó·¨ÖªÊ¶£¬¿¼²éѧÉúºã³ÉÁ¢ÎÊÌâµÄת»¯Çó½âÄÜÁ¦¼°ÔËËãÄÜÁ¦£¬×ÛºÏÐÔ¡¢Âß¼ÐÔÇ¿£¬ÊôÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿