题目内容
已知函数f(x)=sin(2ωx+
)(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
.
(1)求函数f(x)的单调增区间;
(2)求使不等式f(x)≥
的x的取值范围.
(3)若f(α)=
,α∈[-
,
],求f(α+
)的值.
| π |
| 6 |
| π |
| 2 |
(1)求函数f(x)的单调增区间;
(2)求使不等式f(x)≥
| ||
| 2 |
(3)若f(α)=
| 1 |
| 3 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:(1)由题意可得函数的周期为T=
=2×
,求得ω的值,可得函数f(x)=sin(2x+
).令 2kπ-
≤2x+
≤2kπ+
,k∈z,求得 x的范围,可得函数的增区间.
(2)由不等式可得2kπ+
≤2x+
≤2kπ+
,求得x的范围,即可求得不等式的解集.
(3)由条件可得 2α+
∈[-
,
],cos(2α+
)=
,根据f(α+
)=cos[(2α+
)-
],计算求得结果.
| 2π |
| ω |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
(2)由不等式可得2kπ+
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
(3)由条件可得 2α+
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
2
| ||
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:
解:(1)由题意可得函数的周期为T=
=2×
,∴ω=2,∴函数f(x)=sin(2x+
).
令 2kπ-
≤2x+
≤2kπ+
,k∈z,求得 kπ-
≤x≤kπ+
,k∈z,
故函数的增区间为[kπ-
,kπ+
],k∈z.
(2)由不等式f(x)≥
,可得2kπ+
≤2x+
≤2kπ+
,
求得 kπ+
≤x≤kπ+
,k∈z,
故不等式的解集为[kπ+
,kπ+
],k∈z.
(3)若f(α)=sin(2α+
)=
,α∈[-
,
],∴2α+
∈[-
,
],
∴cos(2α+
)=
,
∴f(α+
)=sin(2α+
)=cos2α=cos[(2α+
)-
]=cos(2α+
)cos
+sin(2α+
)sin
=
×
+
×
=
.
| 2π |
| ω |
| π |
| 2 |
| π |
| 6 |
令 2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
故函数的增区间为[kπ-
| π |
| 3 |
| π |
| 6 |
(2)由不等式f(x)≥
| ||
| 2 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
求得 kπ+
| π |
| 12 |
| π |
| 4 |
故不等式的解集为[kπ+
| π |
| 12 |
| π |
| 4 |
(3)若f(α)=sin(2α+
| π |
| 6 |
| 1 |
| 3 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
∴cos(2α+
| π |
| 6 |
2
| ||
| 3 |
∴f(α+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
2
| ||
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
2
| ||
| 6 |
点评:本题主要考查三角函数的恒等变换及化简求值,函数y=Asin(ωx+φ)的图象和性质,属于基础题.
练习册系列答案
相关题目