题目内容
15.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点的坐标为(3,y1)时,△AEF为正三角形,则此时△OAB的面积为$\frac{4\sqrt{3}}{3}$.分析 过F作AE的垂线,垂足为H,则H为AE的中点,利用A点坐标为 (3,y0),可求p,可得抛物线的方程,求出直线AF的方程,与抛物线方程联立求出A,B的坐标,即可求出△OAB的面积.
解答
解:如图所示,过F作AE的垂线,垂足为H,则H为AE的中点,
因为A点坐标为 (3,y1),
所以AE=3+$\frac{p}{2}$,EH=p,
所以2p=3+$\frac{p}{2}$,
所以p=2.
所以y2=4x,此时A(3,2$\sqrt{3}$),kAF=$\sqrt{3}$,
所以直线AF的方程为y=$\sqrt{3}$(x-1),
代入抛物线方程可得3(x-1)2=4x,解得x=3或$\frac{1}{3}$,
所以y=2$\sqrt{3}$或-$\frac{2\sqrt{3}}{3}$,
所以△AOB的面积为$\frac{1}{2}$×1×(2$\sqrt{3}$+$\frac{2\sqrt{3}}{3}$)=$\frac{4\sqrt{3}}{3}$,
故答案为:$\frac{4\sqrt{3}}{3}$.
点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,正确运用抛物线的定义是解题的关键.
练习册系列答案
相关题目
10.
第31届夏季奥林匹克运动会将于2016年8月5日-21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为$\frac{4}{5}$,丙猜中国代表团的概率为$\frac{3}{5}$,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.
| 第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 | |
| 中国 | 38 | 51 | 32 | 28 | 16 |
| 俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为$\frac{4}{5}$,丙猜中国代表团的概率为$\frac{3}{5}$,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.
7.设z=4x•2y中变量x,y满足条件$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,则z的最小值为( )
| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
4.在二项式${({\sqrt{x}+\frac{1}{{2•\root{6}{x}}}})^n}$的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{5}{12}$ |