题目内容
6.在△ABC中,(a+b+c)(a+b-c)=3,C=$\frac{π}{3}$,则△ABC的面积为$\frac{\sqrt{3}}{4}$.分析 根据条件和余弦定理列方程解出ab,代入三角形的面积公式计算.
解答 解:∵(a+b+c)(a+b-c)=3,
∴c2=a2+b2+2ab-3,
由余弦定理得:c2=a2+b2-2abcosC=a2+b2-ab,
∴ab=1,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$.
故答案为:$\frac{\sqrt{3}}{4}$.
点评 本题考查了余弦定理,三角形的面积公式,属于基础题.
练习册系列答案
相关题目
14.已知函数f(x)=$\frac{1}{3}$x3+ax2+2x+2的图象在点(x0,f(x0))处的切线与直线x+y+1=0垂直,则实数a的取值范围为( )
| A. | [-1,1] | B. | (-1,1) | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1)∪(1,+∞) |
1.实数x,y满足条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,则z=x-y-1的最小值为( )
| A. | -3 | B. | -2 | C. | -1 | D. | 3 |
11.将函数f(x)=sin(2x+ϕ),$(|ϕ|<\frac{π}{2})$的图象沿x轴向左平移$\frac{π}{8}$个单位后,得到一个偶函数g(x)的图象,则函数g(x)的一个减区间为( )
| A. | $[{-\frac{π}{4},\frac{π}{4}}]$ | B. | $[{-\frac{π}{2},0}]$ | C. | $[{0,\frac{π}{2}}]$ | D. | $[{\frac{π}{4},\frac{3π}{4}}]$ |
16.据统计,2015年“双11”天猫总成交金额突破912亿元.某购物网站为优化营销策略,对在11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性消费情况:
男性消费情况:
(Ⅰ)计算x,y的值;在抽出的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
附:
(k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
女性消费情况:
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
| 人数 | 5 | 10 | 15 | 47 | x |
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
| 人数 | 2 | 3 | 10 | y | 2 |
| 女士 | 男士 | 总计 | |
| 网购达人 | |||
| 非网购达人 | |||
| 总计 |
附:
| P(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |