题目内容
7.设z=4x•2y中变量x,y满足条件$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,则z的最小值为( )| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
分析 作出可行域,z=22x+y,令m=2x+y,根据可行域判断m的最小值,得出z的最小值.
解答 解:作出约束条件表示的可行域如图:![]()
由z=4x•2y得z=22x+y,
令m=2x+y,则y=-2x+m.
由可行域可知当直线y=-2x+m经过点B时截距最小,即m最小.
解方程组$\left\{\begin{array}{l}{x=1}\\{x-4y=-3}\end{array}\right.$得B(1,1).
∴m的最小值为2×1+1=3.
∴z的最小值为23=8.
故选:C.
点评 本题考查了简单的线性规划,根据指数的运算法则求出2x+y的最小值是关键.
练习册系列答案
相关题目
2.若$\overrightarrow{a}$=(1,2),$\overrightarrow b=({m,1})$,若$\overrightarrow a$∥$\overrightarrow b$,则m=( )
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
16.据统计,2015年“双11”天猫总成交金额突破912亿元.某购物网站为优化营销策略,对在11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性消费情况:
男性消费情况:
(Ⅰ)计算x,y的值;在抽出的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
附:
(k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
女性消费情况:
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
| 人数 | 5 | 10 | 15 | 47 | x |
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
| 人数 | 2 | 3 | 10 | y | 2 |
| 女士 | 男士 | 总计 | |
| 网购达人 | |||
| 非网购达人 | |||
| 总计 |
附:
| P(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |