题目内容

15.已知函数f(x)=(ex-1-1)(x-1),则(  )
A.当x<0,有极大值为2-$\frac{4}{e}$B.当x<0,有极小值为2-$\frac{4}{e}$
C.当x>0,有极大值为0D.当x>0,有极小值为0

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.

解答 解:f(x)=(ex-1-1)(x-1),
∴f′(x)=xex-1-1,
x>0时,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,
故f(x)在(0,1)递减,在(1,+∞)递增,
故f(x)极小值=f(1)=0,
故选:D.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网