ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨$\frac{3}{2}$£¬-$\frac{\sqrt{6}}{2}$£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£®£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨II£©ÈôµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÍÖÔ²CÉϵÄÁÁµã£¬ÇÒx1¡Ùx2£¬µãP£¨1£¬0£©£¬Ö¤Ã÷£º¡÷PAB²»¿ÉÄÜΪµÈ±ßÈý½ÇÐΣ®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâÁйØÓÚa£¬b£¬cµÄ·½³Ì×飬Çó½âµÃµ½a£¬bµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Çó³öPA£¬PB£¬Ö¤Ã÷|PA|¡Ù|PB|£¬¼´¿ÉÖ¤Ã÷£º¡÷PAB²»¿ÉÄÜΪµÈ±ßÈý½ÇÐΣ®
½â´ð £¨I£©½â£ºÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}{\frac{9}{4{a}^{2}}+\frac{6}{4{b}^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ${a}^{2}=\frac{9}{2}£¬{b}^{2}=3$£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{2{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$£»
£¨II£©Ö¤Ã÷£ºÖ¤Ã÷£ºA£¨x1£¬y1£©£¬Ôò$2{{x}_{1}}^{2}+3{{y}_{1}}^{2}=9$£¬ÇÒx1¡Ê[-$\frac{3\sqrt{2}}{2}$£¬$\frac{3\sqrt{2}}{2}$]£¬
|PA|=$\sqrt{£¨{x}_{1}-1£©^{2}+{y}_{1}2}$=$\sqrt{£¨{x}_{1}-1£©^{2}+3-\frac{2}{3}{{x}_{1}}^{2}}$=$\sqrt{\frac{1}{3}£¨{x}_{1}-3£©^{2}+1}$£¬
B£¨x2£¬y2£©£¬Í¬Àí¿ÉµÃ|PB|=$\sqrt{\frac{1}{3}£¨{x}_{2}-3£©^{2}+1}$£¬ÇÒx2¡Ê[-$\frac{3\sqrt{2}}{2}$£¬$\frac{3\sqrt{2}}{2}$]£®
y=$\frac{1}{3}£¨x-3£©^{2}+1$ÔÚ[-$\frac{3\sqrt{2}}{2}$£¬$\frac{3\sqrt{2}}{2}$]Éϵ¥µ÷£¬
¡àÓÐx1=x2?|PA|=|PB|£¬
¡ßx1¡Ùx2£¬¡à|PA|¡Ù|PB|£¬
¡à¡÷PAB²»¿ÉÄÜΪµÈ±ßÈý½ÇÐΣ®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÁ½µã¼ä¾àÀ빫ʽµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | µ±x£¼0£¬Óм«´óֵΪ2-$\frac{4}{e}$ | B£® | µ±x£¼0£¬Óм«Ð¡ÖµÎª2-$\frac{4}{e}$ | ||
| C£® | µ±x£¾0£¬Óм«´óֵΪ0 | D£® | µ±x£¾0£¬Óм«Ð¡ÖµÎª0 |
| A£® | y2=¡À2$\sqrt{2}$x | B£® | y2=¡À2x | C£® | y2=¡À4x | D£® | y2=¡À4$\sqrt{2}$x |
| A£® | $\frac{10}{17}$ | B£® | $\frac{14}{17}$ | C£® | $\frac{9}{16}$ | D£® | $\frac{7}{9}$ |