题目内容

18.点A,B,C,D均在同一球面上,且AB、AC、AD两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为14π.

分析 三棱锥A-BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.

解答 解:三棱锥A-BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,
它也外接于球,对角线的长为球的直径,d=$\sqrt{1+4+9}$=$\sqrt{14}$,
它的外接球半径是$\frac{\sqrt{14}}{2}$,
外接球的表面积是4π($\frac{\sqrt{14}}{2}$)2=14π.
故答案为:14π.

点评 本题考查球的表面积,考查学生空间想象能力,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网