题目内容
2.已知a=log2.10.3,b=log0.20.3,c=0.2-3.1,则a,b,c的大小关系( )| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
分析 利用指数函数与对数函数的单调性即可得出.
解答 解:∵a=log2.10.3<0,b=log0.20.3∈(0,1),c=0.2-3.1>1,
∴a<b<c,
故选:A.
点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
10.已知函数f(x)=-x2-2x,设a=ln2,b=log${\;}_{\frac{1}{3}}$2,c=3${\;}^{\frac{1}{2}}$,则必有( )
| A. | f(b)>f(a)>f(c) | B. | f(c)>f(a)>f(b) | C. | f(a)>f(b)>f(c) | D. | f(b)>f(c)>f(a) |
7.定义在R上的偶函数f(x)满足f(2+x)=f(x),且在[-3,-2]上是减函数,若A、B是锐角三角形ABC的两个内角,则下列各式一定成立的是( )
| A. | f(sinA)<f(cosB) | B. | f(sinA)>f(cosB) | C. | f(sinA)>f(sinB) | D. | f(cosA)>f(cosB) |
14.下列各组函数中,表示同一函数的是( )
| A. | y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2 | B. | y=lg(x2-1)和y=lg(x+1)+lg(x-1) | ||
| C. | y=logax2和y=2logax | D. | y=x和y=logaax |
11.若函数f(x)满足对任意的两个不相等的正数x1,x2,下列三个式子:f(x1-x2)+f(x2-x1)=0,(x1-x2)(f(x1)-f(x2))<0,f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$都恒成立,则f(x)可能是( )
| A. | f(x)=$\frac{1}{x}$ | B. | f(x)=-x2 | C. | f(x)=-tanx | D. | f(x)=|sinx| |