题目内容

7.定义在R上的偶函数f(x)满足f(2+x)=f(x),且在[-3,-2]上是减函数,若A、B是锐角三角形ABC的两个内角,则下列各式一定成立的是(  )
A.f(sinA)<f(cosB)B.f(sinA)>f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)

分析 由f(x+2)=f(x)求出函数f(x)的周期,由周期性和条件可得f(x)在[-1,0]上单调性,由偶函数的单调性得到f(x)在[0,1]上的单调性,根据锐角三角形的条件、诱导公式、正弦函数的单调性判断出sinA和cosB大小,根据f(x)的单调性得到答案.

解答 解:由f(x+2)=f(x)得,函数f(x)的周期为2,
因为f(x)在[-3,-2]上为减函数,所以f(x)在[-1,0]上为减函数,
因为f(x)为偶函数,所以f(x)在[0,1]上为单调增函数.
因为在锐角三角形中,π-A-B<$\frac{π}{2}$,
所以A+B>$\frac{π}{2}$,即$\frac{π}{2}$-B<A,
因为α,β是锐角,所以0<$\frac{π}{2}$-B<A<$\frac{π}{2}$,
所以sinA>sin($\frac{π}{2}$-B)=cosB,
因为f(x)在[0,1]上为单调增函数.
所以f(sinA)>f(cosB),
故选B.

点评 本题考查偶函数与函数单调性的关系,正弦函数的单调性,诱导公式,以及函数周期性与单调性的应用,考查转化思想,化简、变形能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网