题目内容

已知函数f(x)=2cosxsin(x+
π
3
)-
3
sin2x
+sinxcosx+1.
(1)求函数f(x)取得最大值时x的集合;
(2)当x∈[0,
π
12
]时,求f(x)的值域.
考点:两角和与差的正弦函数,三角函数的最值
专题:三角函数的求值,三角函数的图像与性质
分析:(1)化简可得f(x)=2sin(2x+
π
3
)+1,由2x+
π
3
=2kπ+
π
2
,k∈Z可解得:x=kπ+
π
12
,k∈Z
(2)由x∈[0,
π
12
],可得2x+
π
3
∈[
π
3
π
2
],从而可求f(x)的值域.
解答: 解:(1)∵f(x)=2cosxsin(x+
π
3
)-
3
sin2x
+sinxcosx+1=
1
2
sin2x+
3
(1+cos2x)
2
-
3
(1-cos2x)
2
+
1
2
sin2x+1=2sin(2x+
π
3
)+1
∴由2x+
π
3
=2kπ+
π
2
,k∈Z可解得:x=kπ+
π
12
,k∈Z
即:当x∈{x|x=kπ+
π
12
,k∈Z}时,数f(x)取得最大值3.
(2)∵由x∈[0,
π
12
],可得2x+
π
3
∈[
π
3
π
2
],有
3
2
≤sin(2x+
π
3
)≤1
3
+1≤
f(x)≤3,即f(x)的值域为[
3
+1
,3].
点评:本题主要考察了两角和与差的正弦函数,三角函数的最值,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网