题目内容

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值为(  )
A、9B、12C、16D、17
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:设出等差数列的首项和公差,得到前n项和,由已知列式求得首项和公差,把a17+a18+a19+a20转化为含首项和公差的表达式得答案.
解答: 解:设首项为a1,公差为d.
Sn=na1+
n(n-1)d
2
,得
S4=4a1+6d=1,
S8=8a1+28d=4,
解得:a1=
1
16
,d=
1
8

∴a17+a18+a19+a20=S20-S16=4a1+70d
=4×
1
16
+70×
1
8
=9.
故选A.
点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础的计算题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网