题目内容
9.(1)求证:A1C∥平面AB1D;
(2)求证:平面AB1D⊥平面ABM.
分析 如图以A为原点,以AC,AA1为y、z轴建立空间直角坐标系.设AB=4,则AA1=8,CM=1.则A(0,0,0),B(2$\sqrt{3}$,2,0),C(0,4,0).
A1(0,0,8),B1(2$\sqrt{3}$,2,8),C1(0,4,8),D($\sqrt{3}$,3,0),M(0,4,1),利用向量法求解.
解答 解:如图以A为原点,以AC,AA1为y、z轴建立空间直角坐标系.
设AB=4,则AA1=8,CM=1.则A(0,0,0),B(2$\sqrt{3}$,2,0),C(0,4,0).
A1(0,0,8),B1(2$\sqrt{3}$,2,8),C1(0,4,8),D($\sqrt{3}$,3,0),M(0,4,1)
(1)设面AB1D的法向量为$\overrightarrow{m}=(x,y,z)$
$\overrightarrow{A{B}_{1}}=(2\sqrt{3},2,8),\overrightarrow{AD}=(\sqrt{3},3,0)$
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{A{B}_{1}}=2\sqrt{3}x+2y+8z=0}\\{\overrightarrow{m}•\overrightarrow{AD}=\sqrt{3}x+3y=0}\end{array}\right.$
可取$\overrightarrow{m}=(\sqrt{3},-1,-\frac{1}{2})$
$\overrightarrow{{A}_{1}C}=(0,4,-8)$
,$\overrightarrow{{A}_{1}C}•\overrightarrow{m}=0-4+4=0$,则${A}_{1}C⊥\overrightarrow{m}$
∵A1C?面AB1D,∴A1C∥平面AB1D![]()
(2)设面ABNM的法向量为$\overrightarrow{n}=(a,b,c)$
$\overrightarrow{AB}=(2\sqrt{3},2,0)$,$\overrightarrow{AM}=(0,4,1)$
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=2\sqrt{3}x+2y=0}\\{\overrightarrow{n}•\overrightarrow{AM}=4y+z=0}\end{array}\right.$,可取$\overrightarrow{n}=(\sqrt{3},-3,12)$
由(1)得面AB1D的法向量为$\overrightarrow{m}=(\sqrt{3},-1,-\frac{1}{2})$,
$\overrightarrow{m}•\overrightarrow{n}$=$\sqrt{3}×\sqrt{3}$+(-1)×(-3)+12×$(-\frac{1}{2})$=0
∴$\overrightarrow{m}⊥\overrightarrow{n}$,∴平面AB1D⊥平面ABM
点评 本题考查了空间线面平行、面面垂直的判定,熟练掌握向量法的应用是解题的关键,属于中档题.
| A. | (0,3] | B. | (0,4] | C. | [2,3] | D. | [2,+∞) |
| A. | (0,1) | B. | [0,1] | C. | (-1,1] | D. | (-1,0] |