题目内容
已知数列{an}的前n项和Sn=n2+2n+1,若数列{bn}满足bn=
,则其前n项和Tn= .
| 2 |
| an•an+1 |
考点:数列的求和
专题:等差数列与等比数列
分析:由于Sn=n2+2n+1,利用“当n≥2时,Sn-Sn-1,当n=1时,a1=S1”即可得出an,再利用“裂项求和”即可得出.
解答:
解:∵Sn=n2+2n+1,
∴当n≥2时,Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,
当n=1时,a1=S1=3,上式也成立.
∴an=2n+1.
∴bn=
=
=
-
.
则其前n项和Tn=(
-
)+(
-
)+…+(
-
)
=
-
=
.
故答案为:
.
∴当n≥2时,Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,
当n=1时,a1=S1=3,上式也成立.
∴an=2n+1.
∴bn=
| 2 |
| an•an+1 |
| 2 |
| (2n+1)(2n+3) |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
则其前n项和Tn=(
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 3 |
| 1 |
| 2n+3 |
=
| 2n |
| 6n+9 |
故答案为:
| 2n |
| 6n+9 |
点评:本题考查了利用“当n≥2时,Sn-Sn-1,当n=1时,a1=S1”求an、“裂项求和”的方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
设a=(
)
,b=log2
,c=log23,则( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| A、a>b>c |
| B、c>a>b |
| C、a>c>b |
| D、c>b>a |