题目内容
7.(1)求证:平面MBE⊥平面PAC;
(2)求二面角M-AC-N的余弦值.
分析 (1)设F为AC中点,连接BF和EF,可得B、F、E三点共线,且BE⊥AC.再由PA⊥平面ABCD,得PA⊥BE,从而BE⊥平面PAC,进一步得到平面MBE⊥平面PAC;
(2)由PA⊥平面ABCD,得PA⊥AC且PA⊥AD,又AC⊥AD,则以A为坐标原点,AC为x轴,AD为y轴,AP为z轴建立如图所示空间直角坐标系,由已知求出所用点的坐标,分别求出平面MAC的法向量与平面NAC的法向量,由两法向量所成角的余弦值可得二面角M-AC-N的余弦值.
解答 (1)证明:设F为AC中点,连接BF和EF,![]()
∵AB=BC,∴BF⊥AC.
∵E为CD中点,∴EF∥AD.
又∵AC⊥AD,∴EF⊥AC.
∴B、F、E三点共线,∴BE⊥AC.
又∵PA⊥平面ABCD,且BE?平面ABCD,
∴PA⊥BE.
∴BE⊥平面PAC.
又∵BE?平面MBE,
∴平面MBE⊥平面PAC;
(2)解:∵PA⊥平面ABCD,∴PA⊥AC且PA⊥AD.
又∵AC⊥AD,
∴以A为坐标原点,AC为x轴,AD为y轴,AP为z轴建立如图所示空间直角坐标系,
∵PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N,E分别为PD,PB,CD的中点,
∴A(0,0,0),B(2,-4,0),C(4,0,0),D(0,2,0),P(0,0,4),
M(0,1,2),N(1,-2,2).
∴$\overrightarrow{AM}=(0,1,2)$,$\overrightarrow{AC}=(4,0,0)$,$\overrightarrow{AN}=(1,-2,2)$.
设平面MAC的法向量为$\overrightarrow{m}=({x}_{1},{y}_{1},{z}_{1})$,平面NAC的法向量为$\overrightarrow{n}=({x}_{2},{y}_{2},{z}_{2})$.
由$\left\{\begin{array}{l}{\overrightarrow{AM}•\overrightarrow{m}=0}\\{\overrightarrow{AC}•\overrightarrow{m}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{{y}_{1}+2{z}_{1}=0}\\{4{x}_{1}=0}\end{array}\right.$,取z=1,得$\overrightarrow{m}=(0,-2,1)$.
由$\left\{\begin{array}{l}{\overrightarrow{AN}•\overrightarrow{n}=0}\\{\overrightarrow{AC}•\overrightarrow{n}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{{x}_{2}-2{y}_{2}+2{z}_{2}=0}\\{4{x}_{2}=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}=(0,1,1)$.
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{-1}{\sqrt{5}×\sqrt{2}}=-\frac{\sqrt{10}}{10}$.
∴二面角M-AC-N的余弦值为$\frac{\sqrt{10}}{10}$.
点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.
| A. | 36π | B. | 64π | C. | 100π | D. | 104π |
| A. | a1⊥a4 | B. | a1∥a4 | ||
| C. | a1与a4既不垂直也不平行 | D. | a1与a4的位置关系不确定 |