题目内容
14.求函数$f(x)=2{sin^2}x+2\sqrt{3}sinx•cosx+1\;(x∈R)$的值域,最小正周期及单调递增区间.分析 利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;结合三角函数的图象和性质,求出f(x)的最大值和最小值,即得到f(x)的值域.
解答 解:函数$f(x)=2{sin^2}x+2\sqrt{3}sinx•cosx+1\;(x∈R)$.
化简可得:f(x)=1-cos2x+$\sqrt{3}$sin2x+1=$\sqrt{3}$sin2x-cos2x+2=2sin(2x-$\frac{π}{6}$)+2.
∴函数f(x)的最小正周期T=$\frac{2π}{2}=π$.
∵sin(2x-$\frac{π}{6}$)∈[-1,1],
∴函数f(x)的值域为[0,4].
令$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$,
∴函数f(x)的单调递增区间为[$-\frac{π}{6}+kπ$,$\frac{π}{3}+kπ$],k∈Z.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键,属于基础题.
练习册系列答案
相关题目
2.下列求导正确的是( )
| A. | (3x2-2)'=3x | B. | (log2x)'=$\frac{1}{x•ln2}$ | C. | (cosx)'=sinx | D. | ($\frac{1}{lnx}$)'=x |
19.命题“?x0∈R,$\frac{2}{x_0}$+lnx0≥0”的否定是( )
| A. | $?{x}∈R,\frac{2}{x}+ln{x}<0$ | B. | $?{x}∈R,\frac{2}{x}+ln{x}≤0$ | ||
| C. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}<0$ | D. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}≤0$ |
6.命题“?x∈R,x2+x+1<0”的否定为( )
| A. | ?x∈R,x2+x+1≥0 | B. | ?x∉R,x2+x+1≥0 | ||
| C. | ?x0∉R,x02+x0+1<0 | D. | ?x0∈R,x02+x0+1≥0 |
3.设等比数列{an}中,a3=3,a4=9,若a1•a2•a3•…•an=344,则n=( )
| A. | 13 | B. | 12 | C. | 11 | D. | 10 |