题目内容
19.命题“?x0∈R,$\frac{2}{x_0}$+lnx0≥0”的否定是( )| A. | $?{x}∈R,\frac{2}{x}+ln{x}<0$ | B. | $?{x}∈R,\frac{2}{x}+ln{x}≤0$ | ||
| C. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}<0$ | D. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}≤0$ |
分析 直接利用特称命题的否定是全称命题,写出结果即可.
解答 解:因为特称命题的否定是全称命题,所以,“?x0∈R,$\frac{2}{x_0}$+lnx0≥0”的否定是?x∈R,$\frac{2}{x}$+lnx<0,
故选:A
点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.
练习册系列答案
相关题目
10.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{1}{a}+\frac{1}{{{b^{\;}}}}$的最小值为( )
| A. | 2 | B. | $\frac{8}{3}$ | C. | $\frac{25}{6}$ | D. | 4 |
11.设f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=$\sqrt{3}$tan$\frac{πx}{6}$,若在区间(-2,6)内关于x的方程f(x)-ax-a=0恰有3个不同实数根,则正数a的取值范围是( )
| A. | ($\frac{3}{7}$,1) | B. | ($\frac{3}{4}$,1) | C. | (0,$\frac{3}{7}$) | D. | (0,$\frac{3}{4}$) |