题目内容
11.已知函数$f(x)=\left\{{{\;}_{{3^x},x≤0}^{{{log}_2}x,x>0}}\right.$,则$f[{f(\frac{1}{2})}]$=( )| A. | -3 | B. | 3 | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
分析 先求出f($\frac{1}{2}$)$lo{g}_{2}\frac{1}{2}$=-1,从而$f[{f(\frac{1}{2})}]$=f(-1),由此能求出结果.
解答 解:∵$f(x)=\left\{{{\;}_{{3^x},x≤0}^{{{log}_2}x,x>0}}\right.$,
∴f($\frac{1}{2}$)$lo{g}_{2}\frac{1}{2}$=-1,
$f[{f(\frac{1}{2})}]$=f(-1)=${3}^{-1}=\frac{1}{3}$.
故选:D.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
20.抛物线y2=8x的焦点为F,过F作直线l交抛物线于A、B两点,设$|{\overrightarrow{FA}}|=m,\overrightarrow{|{FB}|}=n$,则m•n的取值范围为( )
| A. | (0,4] | B. | (0,16] | C. | [16,+∞) | D. | [4,+∞) |
1.已知空间四边形OABC,M在AO上,满足$\frac{AM}{MO}$=$\frac{1}{2}$,N是BC的中点,且$\overrightarrow{AO}$=$\overrightarrow{a}$,$\overrightarrow{AB}$=$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{c}$用a,b,c表示向量$\overrightarrow{MN}$为( )
| A. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ | B. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$ | C. | -$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ | D. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ |