题目内容

在△ABC中,a,b,c分别是角A,B,C所对的边,若acos2
C
2
+ccos2
A
2
=
3b
2
,求证:a+c=2b.
考点:余弦定理
专题:解三角形
分析:利用正弦定理以及二倍角的余弦函数以及两角和与差的三角函数化简方程,通过正弦定理求证结果.
解答: 证明:∵acos2
C
2
+ccos2
A
2
=
3b
2

∴sinA
1+cosC
2
+sinC
1+cosA
2
=
3sinB
2

即:sinA+sinAcosC+sinC+sinCcosA=3sinB,
∴sinA+sinC+sin(C+A)=3sinB
即sinA+sinC=2sinB
∴a+c=2b.
点评:本题考查正弦定理以及两角和与差的三角函数,二倍角公式的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网