题目内容
在空间直角坐标系中,定义:平面α的一般方程为:Ax+By+Cz+D=0(A,B,C,D∈R,且A,B,C不同时为零),点P(x0,y0,z0)到平面α的距离为:d=
,则在底面边长与高都为2的正四棱锥中,底面中心O到侧面的距离等于( )
| |Ax0+By0+Cz0+D| | ||
|
A、
| ||||
B、
| ||||
| C、2 | ||||
| D、5 |
考点:点、线、面间的距离计算
专题:计算题,空间位置关系与距离
分析:欲求底面中心O到侧面的距离,先利用建立空间直角坐标系求出点O的坐标,及侧面的方程,最后利用所给公式计算即可.
解答:
解:以底面中心O为原点建立空间直角坐标系O-xyz,则A(1,1,0),B(-1,1,0),P(0,0,2),设平面PAB的方程为Ax+By+Cz+D=0,将以上3个坐标代入计算得A=0,B=-D,C=-
D,
∴-Dy-
Dz+D=0,即2y+z-2=0,
∴d=
=
.
故选B.
| 1 |
| 2 |
∴-Dy-
| 1 |
| 2 |
∴d=
| 2 | ||
|
2
| ||
| 5 |
故选B.
点评:本小题主要考查点、线、面间的距离计算、空间直角坐标系的应用、空间直角坐标系中点到平面的距离等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目
方程ax2+2x-1=0至少有一个正实根的充要条件是( )
| A、-1≤a≤0 |
| B、a>-1 |
| C、a≥-1 |
| D、-1≤a<0或a>0 |
直线
(t为参数)的倾斜角是( )
|
A、
| ||
B、
| ||
C、
| ||
D、
|
椭圆
+
=1的焦距是2,那么椭圆的长轴长为( )
| x2 |
| 4 |
| y2 |
| k |
A、2或2
| ||
B、2或2
| ||
C、4或2
| ||
D、4或2
|
已知命题p:?x0∈R,(m+1)•(x02+1)≤0,命题q:?x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m的取值范围为( )
| A、m≥2 |
| B、m≤-2或m>-1 |
| C、m≤-2或m≥2 |
| D、-1<m≤2 |
若函数f(x)=x3+x2+mx+1是R上的单调增函数,则实数m的取值范围是( )
A、[
| ||
B、(-
| ||
C、(-∞,
| ||
D、(-∞,
|
设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程为( )
| A、x+y-4=0 |
| B、x+y-5=0 |
| C、x-y+4=0 |
| D、x-y+5=0 |