题目内容
考点:向量在几何中的应用,空间中直线与直线之间的位置关系
专题:平面向量及应用,空间位置关系与距离
分析:由已知条件,设
=
,
=
,
=
,利用向量法进行证明.
| AB |
| a |
| AD |
| b |
| AP |
| c |
解答:
证:设
=
,
=
,
=
,
∵PA⊥平面ABCD,
∴
•
=0,
•
=0,
∵∠ABC=60°,四边形ABCD为菱形,
∴
•
=|
|•|
|•cos∠BAD=|
|2•cos120°
=-
|
|2.
=
+
=
+
,
=
+
+
+
=-
+
+
-
=
-
,
•
=(
+
)•(
-
)
=
•
+
|
|2-
•
-
•
=-
|
|2+
|
|2=0,
∴
⊥
,
∴AE⊥PD.
| AB |
| a |
| AD |
| b |
| AP |
| c |
∵PA⊥平面ABCD,
∴
| a |
| c |
| b |
| c |
∵∠ABC=60°,四边形ABCD为菱形,
∴
| a |
| b |
| a |
| b |
| b |
=-
| 1 |
| 2 |
| b |
| AE |
| AB |
| BE |
| a |
| 1 |
| 2 |
| b |
| PD |
| PA |
| AB |
| BC |
| CD |
| c |
| a |
| b |
| a |
| b |
| c |
| AE |
| PD |
| a |
| 1 |
| 2 |
| b |
| b |
| c |
=
| a |
| b |
| 1 |
| 2 |
| b |
| a |
| c |
| 1 |
| 2 |
| b |
| c |
=-
| 1 |
| 2 |
| b |
| 1 |
| 2 |
| b |
∴
| AE |
| PD |
∴AE⊥PD.
点评:本题考查空间直线的位置关系,是基础题,解题时要注意向量法的合理运用,注意空间思维能力的培养.
练习册系列答案
相关题目
已知全集I={1,2,3,4,5,6},集合A={1,2,4,6},B={2,4,5,6},则∁I(A∩B)=( )
| A、{1,2,4,5,6} |
| B、{1,3,5} |
| C、{3} |
| D、Φ |