题目内容
已知f(x)=2sinx•cosx-2
cos2x+
.
(1)求f(
)的值;
(2)若f(α)=
,且α[
,π],求sin2α的值.
| 3 |
| 3 |
(1)求f(
| π |
| 4 |
(2)若f(α)=
| 10 |
| 13 |
| π |
| 2 |
考点:三角函数中的恒等变换应用
专题:计算题,三角函数的求值
分析:(1)利用三角函数中的恒等变换应用可得f(x)=2sin(2x-
),从而可求得f(
)的值;
(2)依题意,易求sin(2α-
)=
,cos(2α-
)=-
,利用两角和的正弦即可求得sin2α的值.
| π |
| 3 |
| π |
| 4 |
(2)依题意,易求sin(2α-
| π |
| 3 |
| 5 |
| 13 |
| π |
| 3 |
| 12 |
| 13 |
解答:
解:(1)∵f(x)=2sinx•cosx-2
cos2x+
=sin2x-
(2cos2x-1)
=sin2x-
cos2x
=2(
sin2x-
cos2x)
=2sin(2x-
),
∴f(
)=2sin(2×
-
)=2sin
=1;
(2)∵f(α)=
,
∴2sin(2α-
)=
,
∴sin(2α-
)=
,又α∈[
,π],
∴2α-
∈(
,π),
∴cos(2α-
)=-
,
∴sin2α=sin[(2α-
)+
]
=sin(2α-
)cos
+cos(2α-
)sin
=
×
+(-
)×
=
.
| 3 |
| 3 |
=sin2x-
| 3 |
=sin2x-
| 3 |
=2(
| 1 |
| 2 |
| ||
| 2 |
=2sin(2x-
| π |
| 3 |
∴f(
| π |
| 4 |
| π |
| 4 |
| π |
| 3 |
| π |
| 6 |
(2)∵f(α)=
| 10 |
| 13 |
∴2sin(2α-
| π |
| 3 |
| 10 |
| 13 |
∴sin(2α-
| π |
| 3 |
| 5 |
| 13 |
| π |
| 2 |
∴2α-
| π |
| 3 |
| 2π |
| 3 |
∴cos(2α-
| π |
| 3 |
| 12 |
| 13 |
∴sin2α=sin[(2α-
| π |
| 3 |
| π |
| 3 |
=sin(2α-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=
| 5 |
| 13 |
| 1 |
| 2 |
| 12 |
| 13 |
| ||
| 2 |
=
5-12
| ||
| 26 |
点评:本题考查三角函数中的恒等变换应用,考查同角三角函数间的关系与两角和的正弦,考查运算求解能力,属于中档题.
练习册系列答案
相关题目