题目内容

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=BC=1,动点P、Q分别在线段C1D、AC上,则线段PQ长度的最小值时(  )
A、
2
3
B、
3
3
C、
2
3
D、
5
3
考点:空间向量的夹角与距离求解公式
专题:空间向量及应用
分析:
DP
DC1
AQ
AC
,(λ,μ∈[0,1]).可得
DP
=(0,λ,2λ),
DQ
=
DA
(
DC
-
DA
)
=(1-μ,μ,0).利用向量模的计算公式可得|
PQ
|
=|(1-μ,μ-λ,-2λ)|=
(1-μ)2+(μ-λ)2+4λ2
,再利用实数的性质、二次函数的单调性即可得出.
解答: 解:设
DP
DC1
AQ
AC
,(λ,μ∈[0,1]).
DP
=λ(0,1,2)
=(0,λ,2λ),
DQ
=
DA
(
DC
-
DA
)
=(1,0,0)+μ(-1,1,0)=(1-μ,μ,0).
|
PQ
|
=|(1-μ,μ-λ,-2λ)|=
(1-μ)2+(μ-λ)2+4λ2
=
5(λ-
μ
5
)2+
9
5
(μ-
5
9
)2+
4
9
4
9
=
2
3
,当且仅当λ=
μ
5
μ=
5
9
,即λ=
1
9
μ=
5
9
时取等号.
∴线段PQ长度的最小值为
2
3

故选:C.
点评:本题考查了向量共线定理、坐标运算、实数的性质、二次函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网