题目内容
考点:空间中直线与平面之间的位置关系,直线与平面垂直的性质
专题:计算题,空间位置关系与距离
分析:连接BE,则问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数.
解答:
解:连接BE,则
∵SB⊥底面ABCD,∠SEC=90°,
∴BE⊥CE.
故问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数.
设AE=x,则DE=3-x,
∵AB⊥AD,AB∥CD,AB=1,AD=3,CD=2,
∴10=1+x2+4+(3-x)2,
∴x2-3x+2=0,
∴x=1或2,
∴满足BE⊥CE的点E的个数为2,
∴满足∠SEC=90°的点E的个数是2.
故答案为:2.
∵SB⊥底面ABCD,∠SEC=90°,
∴BE⊥CE.
故问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数.
设AE=x,则DE=3-x,
∵AB⊥AD,AB∥CD,AB=1,AD=3,CD=2,
∴10=1+x2+4+(3-x)2,
∴x2-3x+2=0,
∴x=1或2,
∴满足BE⊥CE的点E的个数为2,
∴满足∠SEC=90°的点E的个数是2.
故答案为:2.
点评:本题考查空间中直线与平面之间的位置关系,考查学生的计算能力,问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数是关键.
练习册系列答案
相关题目
三次函数y=ax3-x在(-∞,+∞)内是减函数,则( )
| A、a≤0 | ||
| B、a=1 | ||
| C、a=2 | ||
D、a=
|
己知双曲线
-
=1(a>0,b>0)离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则ab的值为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|