题目内容

己知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则ab的值为(  )
A、
16
3
B、
4
3
3
C、
3
16
D、
3
4
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线的方程算出其焦点为(1,0),从而得出双曲线的右焦点为F(1,0),利用离心率的公式和a、b、c的平方关系建立方程组,解出a、b的值,即可得出结论.
解答: 解:∵抛物线方程为y2=4x,∴2p=4,得抛物线的焦点为(1,0).
∵双曲线的一个焦点与抛物y2=4x的焦点重合,
∴双曲线的右焦点为F(1,0)
∵双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)离心率为2,
∴a=
1
2

∴b=
3
2

∴ab=
3
4

故选:D.
点评:本题给出抛物线的焦点为双曲线右焦点,求双曲线的方程.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网