ÌâÄ¿ÄÚÈÝ
1£®ÎªÁËÆÕ¼°»·±£ÖªÊ¶£¬ÔöÇ¿»·±£Òâʶ£¬Ä³´óѧ´Ó´óѧÀí¹¤ÀàרҵµÄA°àºÍÎÄʷרҵµÄB°à¸÷³éÈ¡20Ãûͬѧ²Î¼Ó»·±£ÖªÊ¶²âÊÔ£¬Í³¼ÆµÃµ½³É¼¨ÓëרҵµÄÁÐÁª±í£º| ÓÅÐã | ·ÇÓÅÐã | ×Ü¼Æ | |
| A°à | 14 | 6 | 20 |
| B°à | 7 | 13 | 20 |
| ×Ü¼Æ | 21 | 19 | 40 |
¢ÙK2ͳ¼ÆÁ¿£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¨ÆäÖÐn=a+b+c+d£©£»
¢Ú¶ÀÁ¢ÐÔ¼ìÑéµÄÁÙ½çÖµ±í£º
| P£¨K¡Ýk0£© | 0.050 | 0.010 |
| k0 | 3.841 | 6.635 |
| A£® | ÓÐ99%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÓÐ¹Ø | |
| B£® | ÓÐ99%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÎÞ¹Ø | |
| C£® | ÓÐ95%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÎÞ¹Ø | |
| D£® | ÓÐ95%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÓÐ¹Ø |
·ÖÎö ¸ù¾Ý±íÖÐÊý¾Ý¼ÆËãͳ¼ÆÁ¿K2£¬²Î¿¼ÁÙ½çÊý¾ÝµÃ³ö½áÂÛ£®
½â´ð ½â£º¸ù¾Ý±íÖÐÊý¾Ý£¬¼ÆËãͳ¼ÆÁ¿
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$=$\frac{40{¡Á£¨14¡Á13-7¡Á6£©}^{2}}{20¡Á20¡Á21¡Á19}$¡Ö4.912£¾3.841£¬
²Î¿¼ÁÙ½çÊý¾ÝÖª£¬ÓÐ95%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶²âÊԳɼ¨ÓëרҵÓйأ®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®Ä³ËÄÀą̂µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃËÄÀą̂µÄÌå»ýÊÇ£¨¡¡¡¡£©

| A£® | 7 | B£® | 6 | C£® | 5 | D£® | 4 |
6£®ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Èôa£¾b£¬c£¾d£¬Ôòac£¾bd | B£® | Èôac£¾bc£¬Ôòa£¾b | ||
| C£® | Èôa£¾b£¬c£¾d£¬Ôòa-c£¾b-d | D£® | Èô$\frac{a}{{c}^{2}}$£¼$\frac{b}{{c}^{2}}$£¬Ôòa£¼b |
11£®ÏÂÁк¯ÊýÖУ¬ÖÜÆÚΪ¦Ð£¬ÇÒÒÔÖ±Ïßx=$\frac{¦Ð}{3}$Ϊ¶Ô³ÆÖáµÄÊÇ£¨¡¡¡¡£©
| A£® | $y=sin£¨\frac{x}{2}+\frac{¦Ð}{3}£©$ | B£® | $y=sin£¨2x-\frac{¦Ð}{6}£©$ | C£® | $y=cos£¨2x-\frac{¦Ð}{6}£©$ | D£® | $y=tan£¨x+\frac{¦Ð}{6}£©$ |