题目内容

11.下列函数中,周期为π,且以直线x=$\frac{π}{3}$为对称轴的是(  )
A.$y=sin(\frac{x}{2}+\frac{π}{3})$B.$y=sin(2x-\frac{π}{6})$C.$y=cos(2x-\frac{π}{6})$D.$y=tan(x+\frac{π}{6})$

分析 根据三角函数的周期性以及图象的对称性,判断各个选项是否正确,从而得出结论.

解答 解:由于y=sin($\frac{x}{2}$+$\frac{π}{3}$)的周期为$\frac{2π}{\frac{1}{2}}$=4π,故排除A;
由于y=sin(2x-$\frac{π}{6}$)的周期为$\frac{2π}{2}$=π,故选项B满足条件;
由于y=cos(2x-$\frac{π}{6}$)的周期为$\frac{2π}{\frac{1}{2}}$=4π,当x=$\frac{π}{3}$时,f(x)=cos$\frac{π}{2}$=0,不是最值,故直线x=$\frac{π}{3}$不是函数的图象对称轴;
由于y=tan(x+$\frac{π}{6}$)的周期为π,当x=$\frac{π}{3}$时,f(x)=tan$\frac{π}{2}$=0,故直线x=$\frac{π}{3}$不是函数的图象对称轴,故排除D,
故选:B.

点评 本题主要考查三角函数的周期性以及图象的对称性,属于中档题.

练习册系列答案
相关题目
19.为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽取8位,他们的数学、物理、化学分数(折算成百分制)事实上对应如表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
化学分数z6772768084879092
(1)若规定80分以上为优秀,请填写如下2×2列联表,问是否有90%的把握认为是否优秀与科目有关;
  优秀 不优秀 合计
 数学   
 物理   
 合计   
(2)用变量y与x,z与x的相关系数说明物理与数学、化学与数学的相关程度;
(3)求y与x,z与x的线性回归方程(系数精确到0,01),当某位同学的数学成绩为50分时,估计其物理、化学两科的成绩.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,
回归直线方程是:$\widehat{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\overline{z}$=81,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈456,$\sum_{i=1}^{8}$(zi-$\overline{z}$)2≈550,≈688,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(zi-$\overline{z}$)≈755,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网