题目内容

13.在△ABC中,内角A,B,C所对的边分别为a,b,c,b(1-2cosA)=2acosB.
(1)若b=2,求c的值;
(2)若a=1,tanA=2$\sqrt{2}$,求△ABC的面积.

分析 (1)由正弦定理得sinB(1-2cosA)=2sinAcosB,
即sinB=2(sinAcosB+cosAsinB)=2sinC,得b=2c.
(2)由tanA=$\frac{sinA}{cosA}$,=2$\sqrt{2}$,解得cosA=$\frac{1}{3}$,sinA=$\frac{2\sqrt{2}}{3}$
由(1)b=2c,由余弦定理有cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4{c}^{2}+{c}^{2}-1}{2bc}=\frac{1}{3}$,解c2=$\frac{3}{11}$,即可求面积.

解答 解:(1)∵b(1-2cosA)=2acosB,
∴由正弦定理得sinB(1-2cosA)=2sinAcosB,
即sinB=2(sinAcosB+cosAsinB)=2sinC
所以b=2c,∵b=2,∴c=1;…(5分)
(2)∵tanA=$\frac{sinA}{cosA}$=2$\sqrt{2}$,∴sinA=2$\sqrt{2}cosA$
∵sin2A+cos2A=1,
解得cosA=$\frac{1}{3}$,∴sinA=$\frac{2\sqrt{2}}{3}$
由(1)b=2c
由余弦定理有cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4{c}^{2}+{c}^{2}-1}{2bc}=\frac{1}{3}$,解得c2=$\frac{3}{11}$
∴s△ABC=$\frac{1}{2}bcsinA={c}^{2}sinA=\frac{3}{11}•\frac{2\sqrt{2}}{3}=\frac{2\sqrt{2}}{11}$.

点评 本题考查了正余弦定理的应用,考查了计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网