题目内容

6.已知正数x、y、z满足x2+y2+z2=1,则S=$\frac{1}{{2xy{z^2}}}$的最小值为(  )
A.3B.$\frac{9}{2}$C.4D.$2\sqrt{3}$

分析 利用基本不等式转化已知条件,推出结果即可.

解答 解:正数x、y、z满足x2+y2+z2=1,
可得1=x2+y2+$\frac{1}{2}$z2+$\frac{1}{2}$z2≥$4\root{4}{{x}^{2}{y}^{2}•\frac{1}{2}{z}^{2}•\frac{1}{2}{z}^{2}}$=4$\sqrt{\frac{1}{2}xy{z}^{2}}$,
可得$\frac{1}{2}xy{z}^{2}$≤$\frac{1}{16}$,xyz2≤$\frac{1}{8}$
即S=$\frac{1}{{2xy{z^2}}}$≥4,当且仅当x=y=$\frac{\sqrt{2}}{2}z$=$\frac{1}{2}$时,S取得最小值4.
故选:C.

点评 本题考查基本不等式在最值中的应用,考查转化思想与计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网