题目内容

已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形,AA1=2
2
,∠BAD=∠A1AC=60°,点M是棱AA1的中点.
(Ⅰ)求证:A1C∥平面BMD;
(Ⅱ)求点C1到平面BDD1B1的距离.
考点:点、线、面间的距离计算,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)连结MO,由已知条件推导出MO∥A1C,由此能证明A1C∥平面BMD;
(Ⅱ)设C1H为C1到平面BDD1B1的距离,证明A1O⊥平面ABCD,利用等体积,结合点B到平面A1B1C1D1的距离等于点A1到平面ABCD的距离A1O=3,可得点C1到平面BDD1B1的距离.
解答: (Ⅰ)证明:AC∩BD=O,连结MO,
∵A1M=MA,AO=OC,
∴MO∥A1C,
∵MO?平面BMD,A1C不包含于平面BMD,
∴A1C∥平面BMD  
(Ⅱ)解:设过C1作C1H⊥平面BDD1B1于H,则
∵BD⊥A1A,BD⊥AC,A1A∩AC=A,
∴BD⊥平面A1AC,
∴BD⊥A1O,
∵四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形,∠BAD=60°,
∴AO=
1
2
AC=
3

∵AA1=2
3
,∠A1AC=60°,
∴A1O⊥AC,
∵AC∩BD=O,
∴A1O⊥平面ABCD
又∵平面ABCD∥平面A1B1C1D1,∴点B到平面A1B1C1D1的距离等于点A1到平面ABCD的距离A1O=3VB-B1C1D1=VC1-BB1D1?
1
3
A1O•
1
2
×2×
3
=
1
3
C1H•
1
2
×2×2
3
C1H=
3
2
点评:本题考查线面平行,考查点到平面距离的计算,考查学生分析解决问题的能力,掌握直线与平面平行的证明方法是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网