题目内容
已知y=f(x)在定义域(-1,1)上是减函数,其图象关于原点对称,且f(1-a)+f(1-2a)<0,则a的取值范围是 .
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:由于y=f(x)在定义域(-1,1)上,其图象关于原点对称,可得函数f(x)是奇函数.再利用单调性即可得出.
解答:
解:∵y=f(x)在定义域(-1,1)上,其图象关于原点对称,
∴函数f(x)是奇函数.
∵f(1-a)+f(1-2a)<0,
∴f(1-a)<-f(1-2a)=f(2a-1),
又y=f(x)在定义域(-1,1)上是减函数,
∴1>1-a>2a-1>-1,
解得0<a<
.
∴a的取值范围是0<a<
.
故答案是:(0,
).
∴函数f(x)是奇函数.
∵f(1-a)+f(1-2a)<0,
∴f(1-a)<-f(1-2a)=f(2a-1),
又y=f(x)在定义域(-1,1)上是减函数,
∴1>1-a>2a-1>-1,
解得0<a<
| 2 |
| 3 |
∴a的取值范围是0<a<
| 2 |
| 3 |
故答案是:(0,
| 2 |
| 3 |
点评:本题考查了函数的奇偶性与单调性,属于中档题.
练习册系列答案
相关题目
为了得到y=sin(2x-
)的图象,只需要将y=sin(2x+
)( )
| π |
| 6 |
| π |
| 3 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|
实数x,y满足x2+y2-4x+1=0,则
的最大值为( )
| y+x |
| x |
A、1+
| ||
B、2+
| ||
C、1+
| ||
D、2+
|
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,则满足f(2-x2)<f(x)的实数x的取值范围为( )
| A、(1,+∞) |
| B、(-∞,-2) |
| C、(-∞,-2)∪(1,+∞) |
| D、(-2,1) |
将自然数1,2,3,…,n,…按第k组含k个数的规则分组:(1),(2,3),(4,5,6),…那么2012所在的组是( )
| A、第64组 | B、第63组 |
| C、第62组 | D、第61组 |