题目内容
13.给出下列四个命题,其中假命题的序号是( )①垂直于同一条直线的两条直线互相平行
②两两相交且不过同一点的三条直线必在同一平面内
③若一个平面内有两条直线与另一个平面都平行,那么这两个平面互相平行
④与两条异面直线都相交的两条直线是异面直线.
| A. | ①③④ | B. | ②③④ | C. | ①②③ | D. | ①②③④ |
分析 ①,在空间垂直于同一条直线的两条直线不一定互相平行;
②,利用直线与平面的基本性质判断A的正误;
③,若一个平面内有两条相交直线与另一个平面都平行,那么这两个平面互相平行‘’
④,根据空间两条直线的位置关系分别判断即可.
解答 解;对于①,在同一平面垂直于同一条直线的两条直线互相平行,在空间垂直于同一条直线的两条直线不一定互相平行,故①错
对于②,如图:∵a∩b=A,b∩c=B,a∩c=C,∴由两条相交直线a、b确定一个平面,不妨记为α,
∴a?α,b?α;又∵C∈a,B∈b,∴B∈α,C∈α;又∵B∈c,C∈c,
∴c?α;∴a、b、c三条直线共面.所以②正确.![]()
对于③,若一个平面内有两条相交直线与另一个平面都平行,
那么这两个平面互相平行,故③错
对于④:如图(1)a、b是异面直线,c、d与a、b都相交,但是cd是相交直线,所以A不正确;
如图(2)c、d是异面直线,所以C不正确;
如果c、d 平行则c、d确定唯一平面,所以a、b都在这个平面内,与a、b是异面直线矛盾,所以④不正确.![]()
故选:A
点评 本题考查空间直线与直线的位置关系,异面直线的判断,考查空间想象能力.属于中档题.
练习册系列答案
相关题目
4.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:
(Ⅰ)求出y对x的线性回归方程;
(Ⅱ)若广告费为9万元,则销售收入约为多少万元?
(线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 广告支出x(单位:万元) | 1 | 2 | 3 | 4 |
| 销售收入y(单位:万元) | 12 | 28 | 42 | 56 |
(Ⅱ)若广告费为9万元,则销售收入约为多少万元?
(线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
1.某班级要从四名男生、两名女生中选派四人参加某次社区服务,则所选的四人中至少有一名女生的选法为( )
| A. | 14 | B. | 8 | C. | 6 | D. | 4 |
8.设f(x)为奇函数,且在(0,+∞)内是增函数,f(-2)=0,则f(x)<0的解集为( )
| A. | (-2,0)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-2,0) | D. | (-∞,-2)∪(0,2) |
18.抛物线y2=64x的准线方程为( )
| A. | x=8 | B. | x=-8 | C. | x=-16 | D. | x=16 |
5.下列函数中,最小值为2的函数是( )
| A. | y=x+$\frac{1}{x}$ | B. | y=sinθ+$\frac{1}{sinθ}$(0<θ<$\frac{π}{2}$) | ||
| C. | y=sinθ+$\frac{1}{sinθ}$(0<θ<π) | D. | $\frac{1}{{\sqrt{{x^2}+2}}}+\sqrt{{x^2}+2}$ |