题目内容

若[-1,1]⊆{x||x2-tx+t|≤1},则实数t的取值范围是(  )
A、[-1,0]
B、[2-2
2
,0]
C、(-∞,-2]
D、[2-2
2
,2+2
2
]
考点:集合的包含关系判断及应用
专题:计算题,集合
分析:令f(x)=|x2-tx+t|,依题意可得|f(-1)|≤1,|f(1)|≤1,解之即可.
解答: 解:令f(x)=|x2-tx+t|,
∵[-1,1]⊆{x||x2-tx+t|≤1},
∴|f(-1)|≤1,|f(1)|≤1,
即|1+2t|≤1,
解得:-1≤t≤0,
∴实数t的取值范围是[-1,0],
故选:A.
点评:本题考查绝对值不等式的解法,转化为|f(-1)|≤1,|f(1)|≤1是关键,考查等价转化思想的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网