ÌâÄ¿ÄÚÈÝ
9£®Æ½Ã漸ºÎÖУ¬Èô¡÷ABCµÄÄÚÇÐÔ²°ë¾¶Îªr£¬ÆäÈý±ß³¤·Ö±ðΪa£¬b£¬c£¬Ôò¡÷ABCµÄÃæ»ý$S=\frac{1}{2}£¨a+b+c£©•r$£®Àà±ÈÉÏÊöÃüÌ⣬ÈôÈýÀâ×¶µÄÄÚÇÐÇò°ë¾¶ÎªR£¬ÆäËĸöÃæµÄÃæ»ý·Ö±ðΪS1£¬S2£¬S3£¬S4£¬²ÂÏëÈýÀâ×¶Ìå»ýVµÄÒ»¸ö¹«Ê½£®ÈôÈýÀâ×¶P-ABCµÄÌå»ýV=$\frac{{2\sqrt{2}}}{3}$£¬ÆäËĸöÃæµÄÃæ»ý¾ùΪ$\sqrt{3}$£¬¸ù¾ÝËù²ÂÏëµÄ¹«Ê½¼ÆËã¸ÃÈýÀâ×¶P-ABCµÄÄÚÇÐÇò°ë¾¶RΪ£¨¡¡¡¡£©| A£® | $\frac{{\sqrt{6}}}{6}$ | B£® | $\frac{{\sqrt{6}}}{3}$ | C£® | $\frac{{\sqrt{6}}}{12}$ | D£® | $\frac{{\sqrt{6}}}{4}$ |
·ÖÎö ¸ù¾ÝÆ½ÃæÓë¿Õ¼äÖ®¼äµÄÀà±ÈÍÆÀí£¬ÓɵãÀà±Èµã»òÖ±Ïߣ¬ÓÉÖ±Ïß Àà±È Ö±Ïß»òÆ½Ãæ£¬ÓÉÄÚÇÐÔ²Àà±ÈÄÚÇÐÇò£¬ÓÉÆ½ÃæÍ¼ÐÎÃæ»ýÀà±ÈÁ¢ÌåͼÐεÄÌå»ý£¬½áºÏÇóÈý½ÇÐεÄÃæ»ýµÄ·½·¨Àà±ÈÇóËÄÃæÌåµÄÌå»ý¼´¿É£®
½â´ð ½â£ºÉèËÄÃæÌåµÄÄÚÇÐÇòµÄÇòÐÄΪO£¬![]()
ÔòÇòÐÄOµ½ËĸöÃæµÄ¾àÀë¶¼ÊÇR£¬
ËùÒÔËÄÃæÌåµÄÌå»ýµÈÓÚÒÔOΪ¶¥µã£¬
·Ö±ðÒÔËĸöÃæÎªµ×ÃæµÄ4¸öÈýÀâ×¶Ìå»ýµÄºÍ£®
ÔòËÄÃæÌåµÄÌå»ýΪ$\frac{1}{3}$£¨S1+S2+S3+S4£©r
¡àr=$\frac{3¡Á\frac{2\sqrt{2}}{3}}{\sqrt{3}¡Á4}$=$\frac{\sqrt{6}}{6}$£®
¹ÊÑ¡£ºA£®
µãÆÀ Àà±ÈÍÆÀíÊÇÖ¸ÒÀ¾ÝÁ½ÀàÊýѧ¶ÔÏóµÄÏàËÆÐÔ£¬½«ÒÑÖªµÄÒ»ÀàÊýѧ¶ÔÏóµÄÐÔÖÊÀà±ÈÇ¨ÒÆµ½ÁíÒ»ÀàÊýѧ¶ÔÏóÉÏÈ¥£®Ò»°ã²½Ö裺¢ÙÕÒ³öÁ½ÀàÊÂÎïÖ®¼äµÄÏàËÆÐÔ»òÕßÒ»ÖÂÐÔ£®¢ÚÓÃÒ»ÀàÊÂÎïµÄÐÔÖÊÈ¥ÍÆ²âÁíÒ»ÀàÊÂÎïµÄÐÔÖÊ£¬µÃ³öÒ»¸öÃ÷È·µÄÃüÌ⣨»ò²ÂÏ룩£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®º¯Êýf£¨x£©=a3sina+5a2x2µÄµ¼Êýf¡ä£¨x£©=£¨¡¡¡¡£©
| A£® | 3a2cosa+10ax2 | B£® | 3a2cosa+10ax2+10a2x | ||
| C£® | a3sina+10a2x | D£® | 10a2x |
17£®¸ù¾Ý$\sqrt{11-2}=3£¬\sqrt{1111-22}=33£¬\sqrt{111111-222}=333¡$£¬²ÂµÃ$\sqrt{\underbrace{11¡1}_{2n¸ö1}-\underbrace{22¡2}_{n¸ö2}}£¨{n¡Ê{N^+}}£©$µÄÖµÊÇ£¨¡¡¡¡£©
| A£® | $\underbrace{33¡3}_{n¸ö}$ | B£® | $\underbrace{33¡3}_{n+1¸ö}$ | C£® | $\underbrace{33¡3}_{2n¸ö}$ | D£® | $\underbrace{33¡3}_{2n-1¸ö}$ |
4£®µÈ²îÊýÁÐ{an}ÖУ¬a${\;}_{7}^{2}$=a3+a11£¬{bn}ΪµÈ±ÈÊýÁУ¬ÇÒb7=a7£¬Ôòb6b8µÄֵΪ£¨¡¡¡¡£©
| A£® | 4 | B£® | 2 | C£® | 16 | D£® | 8 |
1£®Ö±Ïßy=kx+1ÓëÔ²£¨x-2£©2+£¨y-1£©2=4ÏཻÓÚP¡¢QÁ½µã£®Èô|PQ|$¡Ý2\sqrt{2}$£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | $[-\frac{3}{4}£¬0]$ | B£® | $[-\frac{{\sqrt{3}}}{3}£¬\frac{{\sqrt{3}}}{3}]$ | C£® | [-1£¬1] | D£® | $[-\sqrt{3}£¬\sqrt{3}]$ |