题目内容
17.根据$\sqrt{11-2}=3,\sqrt{1111-22}=33,\sqrt{111111-222}=333…$,猜得$\sqrt{\underbrace{11…1}_{2n个1}-\underbrace{22…2}_{n个2}}({n∈{N^+}})$的值是( )| A. | $\underbrace{33…3}_{n个}$ | B. | $\underbrace{33…3}_{n+1个}$ | C. | $\underbrace{33…3}_{2n个}$ | D. | $\underbrace{33…3}_{2n-1个}$ |
分析 根据已知中的等式,可得3的个数等于根据内2的个数,进而得到答案.
解答 解:∵$\sqrt{11-2}=3,\sqrt{1111-22}=33,\sqrt{111111-222}=333…$,
归纳可得:$\sqrt{\underbrace{11…1}_{2n个1}-\underbrace{22…2}_{n个2}}({n∈{N^+}})$=$\underbrace{33…3}_{n个}$,
故选:A
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目
7.
某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
(1)请写出上表的x1、x2、x3,并直接写出函数的解析式;
(2)将f(x)的图象沿x轴向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小;
(3)求△OQP的面积.
| x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| Asin(ωx+φ) | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
(2)将f(x)的图象沿x轴向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小;
(3)求△OQP的面积.
2.已知x>0,y>0,若不等式a(x+y)≥x+$\sqrt{\frac{1}{2}xy}$恒成立,则a的最小值为( )
| A. | $\frac{\sqrt{6}+2}{4}$ | B. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C. | $\sqrt{6}$+2 | D. | $\sqrt{6}$+$\sqrt{2}$ |
9.平面几何中,若△ABC的内切圆半径为r,其三边长分别为a,b,c,则△ABC的面积$S=\frac{1}{2}(a+b+c)•r$.类比上述命题,若三棱锥的内切球半径为R,其四个面的面积分别为S1,S2,S3,S4,猜想三棱锥体积V的一个公式.若三棱锥P-ABC的体积V=$\frac{{2\sqrt{2}}}{3}$,其四个面的面积均为$\sqrt{3}$,根据所猜想的公式计算该三棱锥P-ABC的内切球半径R为( )
| A. | $\frac{{\sqrt{6}}}{6}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{6}}}{12}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
7.设区域Ω={(x,y)|0≤x≤2,0≤y≤2},区域A={(x,y)|xy≤1,(x,y)∈Ω},在区域Ω中随机取一个点,则该点在A中的概率( )
| A. | $\frac{1+2ln2}{4}$ | B. | $\frac{1+2ln2}{8}$ | C. | $\frac{2ln2}{4}$ | D. | $\frac{1}{2}$ |