ÌâÄ¿ÄÚÈÝ

20£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂʵÈÓÚ$\frac{1}{2}$£¬ËüµÄÒ»¸ö¶¥µãÇ¡ºÃÊÇÅ×ÎïÏßx2=8$\sqrt{3}$yµÄ½¹µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©Ö±Ïßx=-2ÓëÍÖÔ²½»ÓÚP£¬QÁ½µã£¬A£¬BÊÇÍÖÔ²ÉÏλÓÚÖ±Ïßx=-2Á½²àµÄ¶¯µã£®
¢ÙÈôÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬ÇóËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£»
¢Úµ±¶¯µãA£¬BÂú×ã¡ÏAPQ=¡ÏBPQʱ£¬ÊÔÎÊÖ±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèÍÖÔ²±ê×¼·½³ÌΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©£¬ÓÉÒÑÖªµÃb=2$\sqrt{3}$£¬e=$\frac{c}{a}$=$\frac{1}{2}$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ±ê×¼·½³Ì£®
£¨2£©¢ÙÏÈÇó³ö|PQ|=6£¬ÉèÖ±ÏßABµÄ·½³ÌΪ$y=\frac{1}{2}x+m$£¬Óë$\frac{x^2}{16}+\frac{y^2}{12}=1$ÁªÁ¢£¬µÃx2+mx+m2-12=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÍÖÔ²ÏÒ³¤¹«Ê½£¬½áºÏÒÑÖªÄÜÇó³öËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£®
¢ÚÉèPAбÂÊΪk£¬ÔòPBбÂÊΪ-k£®·Ö±ðÉè³öPAµÄÖ±Ïß·½³ÌºÍPBµÄÖ±Ïß·½³Ì£¬·Ö±ðÓëÍÖÔ²ÁªÁ¢£¬ÄÜÇó³öÖ±ÏßABµÄбÂÊÊÇΪ¶¨Öµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬¡àÉèÍÖÔ²±ê×¼·½³ÌΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©£¬
¡ßÍÖÔ²ÀëÐÄÂʵÈÓÚ$\frac{1}{2}$£¬ËüµÄÒ»¸ö¶¥µãÇ¡ºÃÊÇÅ×ÎïÏßx2=8$\sqrt{3}$yµÄ½¹µã£®
${x^2}=8\sqrt{3}y$½¹µãΪ$£¨0£¬2\sqrt{3}£©$£¬
¡àb=2$\sqrt{3}$¡­£¨1·Ö£©e=$\frac{c}{a}$=$\frac{1}{2}$£¬a2-b2=c2£¬
¡à½âµÃa2=16£¬b2=12
¡àÍÖÔ²CµÄ±ê×¼·½³Ì$\frac{x^2}{16}+\frac{y^2}{12}=1$£®¡­£¨3·Ö£©
£¨2£©¢ÙÖ±Ïß x=-2ÓëÍÖÔ²$\frac{x^2}{16}+\frac{y^2}{12}=1$½»µãP£¨-2£¬3£©£¬Q£¨-2£¬-3£©»òP£¨-2£¬-3£©£¬Q£¨-2£¬3£©£¬¡à|PQ|=6£¬¡­£¨4·Ö£©
ÉèA £¨x1£¬y1  £©£¬B£¨ x2£¬y2£©£¬Ö±ÏßABµÄ·½³ÌΪ$y=\frac{1}{2}x+m$£¬
Óë$\frac{x^2}{16}+\frac{y^2}{12}=1$ÁªÁ¢£¬µÃ x2+mx+m2-12=0£¬
ÓÉ¡÷=m2-4£¨m2-12£©£¾0£¬µÃ-4£¼m£¼4£¬
ÓÉΤ´ï¶¨ÀíµÃx1+x2=-m£¬${x_1}{x_2}={m^2}-12$£¬¡­£¨6·Ö£©
ÓÉA£¬BÁ½µãλÓÚÖ±Ïßx=-2Á½²à£¬µÃ£¨x1+2£©£¨x2+2£©£¼0£¬
¼´x1x2+2£¨x1+x2£©+4£¼0¡àm2-2m-8£¼0
½âµÃ-2£¼m£¼4£¬¡­£¨7·Ö£©
¡àS=$\frac{1}{2}$•|PQ|•|x1-x2|
=$\frac{1}{2}$•|PQ|•$\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}$
=3$\sqrt{48-3{m^2}}$£¬
¡àµ±m=0ʱ£¬S×î´óֵΪ$12\sqrt{3}$£®¡­£¨8·Ö£©
¢Úµ±¡ÏAPQ=¡ÏBPQʱֱÏßPA£¬PBбÂÊÖ®ºÍΪ0£®
ÉèPAбÂÊΪk£¬ÔòPBбÂÊΪ-k£®
µ±P£¨-2£¬3£©£¬Q£¨-2£¬-3£©Ê±£¬
PAµÄÖ±Ïß·½³ÌΪy-3=k£¨x+2£©¡­£¨9·Ö£©
ÓëÍÖÔ²ÁªÁ¢µÃ£¨3+4k2£©x2+8k£¨2k+3£©x+4£¨2k+3£©2-48=0
¡à${x_1}+£¨-2£©=\frac{{-16{k^2}-24k}}{{3+4{k^2}}}$£»
ͬÀí${x_2}+£¨-2£©=\frac{{-16{k^2}+24k}}{{3+4{k^2}}}$
¡à${x_1}+{x_2}=\frac{{12-16{k^2}}}{{3+4{k^2}}}$¡­£¨10·Ö£©
${x_1}-{x_2}=\frac{-48k}{{3+4{k^2}}}$y1-y2=k£¨x1+2£©+3-[-k£¨x2+2£©+3]
Ö±ÏßABбÂÊΪ$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=-\frac{1}{2}$¡­£¨11·Ö£©
µ±P£¨-2£¬-3£©£¬Q£¨-2£¬3£©Ê±£¬Í¬Àí¿ÉµÃÖ±ÏßABбÂÊΪ$\frac{1}{2}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²±ê×¼·½³ÌµÄÇ󷨣¬¿¼²éËıßÐÎÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÍÖÔ²ÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø