题目内容
10.在极坐标系中,点(2,$\frac{π}{3}$)到直线ρcosθ=2的距离为( )| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
分析 利用极坐标与直角坐标的互化公式化为直角坐标系下的坐标与方程,即可得出答案.
解答 解:由x=2cos$\frac{π}{3}$=1,y=2sin$\frac{π}{3}$=$\sqrt{3}$,
可得点A(2,$\frac{π}{3}$)的直角坐标为A(1,$\sqrt{3}$),
直线ρcosθ=2的直角坐标方程为x=2.
∴点A(1,$\sqrt{3}$)到直线x=2的距离d=2-1=1,
即点A(2,$\frac{π}{3}$)到直线ρcosθ=2的距离是1.
故选:B.
点评 本题考查了极坐标与直角坐标的互化、点到直线的距离,属于基础题.
练习册系列答案
相关题目
15.
电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.
求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
| 观看方式 年龄(岁) | 电视 | 网络 |
| [15,45) | 150 | 250 |
| [45,65] | 120 | 80 |
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2.已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为$(\frac{8}{3}\;,\;2)$,则$|\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}|$的取值范围为( )
| A. | [8,10] | B. | [9,11] | C. | [8,11] | D. | [9,12] |
19.某研究中心计划研究S市中学生的视力情况是否存在区域差异和年级差异.由数据库知S市城区和郊区的中学生人数,如表1.
表1 S市中学生人数统计
现用分层抽样的方法从全市中学生中抽取总量百分之一的样本,进行了调查,得到近视的学生人数如表2.
表2 S市抽样样本中近视人数统计
(Ⅰ)请你用独立性检验方法来研究高二(11年级)学生的视力情况是否存在城乡差异,填写2×2列联表,并判断能否在犯错误概率不超过5%的前提下认定“学生的近视情况与地区有关”.
附:
独立性检验公式为:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)请你选择合适的角度,处理表1和表2的数据,列出所需的数据表,画出散点图,并根据散点图判断城区中学生的近视情况与年级是成正相关还是负相关.
表1 S市中学生人数统计
人数 年级 区域 | 7 | 8 | 9 | 10 | 11 | 12 |
| 城区 | 30000 | 24000 | 20000 | 16000 | 12500 | 10000 |
| 郊区 | 5000 | 4400 | 4000 | 2300 | 2200 | 1800 |
表2 S市抽样样本中近视人数统计
人数 年级 区域 | 7 | 8 | 9 | 10 | 11 | 12 |
| 城区 | 75 | 72 | 76 | 72 | 75 | 74 |
| 郊区 | 10 | 9 | 15 | 8 | 9 | 11 |
附:
| P(K2≥k0) | 0.5 | 0.4 | 0.25 | 0.15 | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅱ)请你选择合适的角度,处理表1和表2的数据,列出所需的数据表,画出散点图,并根据散点图判断城区中学生的近视情况与年级是成正相关还是负相关.
11.王府井百货分店今年春节期间,消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对春节前7天参加抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表格如下:
经过进一步统计分析,发现y与x具有线性相关关系.
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该活动只持续10天,估计共有多少名顾客参加抽奖.
参与公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehata=\overline y-\widehatb\overline x$,$\sum_{i=1}^7{{x_i}{y_i}=364}$.
| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| y | 5 | 8 | 8 | 10 | 14 | 15 | 17 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该活动只持续10天,估计共有多少名顾客参加抽奖.
参与公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehata=\overline y-\widehatb\overline x$,$\sum_{i=1}^7{{x_i}{y_i}=364}$.