ÌâÄ¿ÄÚÈÝ
18£®£¨¢ò£©É輯ºÏ$A=\{y|y={x^2}-2x+\frac{1}{2}\}$£¬B={x|m+x2¡Ü1£¬m£¼1}£¬ÃüÌâp£ºx¡ÊA£»ÃüÌâq£ºx¡ÊB£¬ÈôpÊÇqµÄ±ØÒªÌõ¼þ£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
·ÖÎö £¨¢ñ£©Ö±½Ó¹Û²ì¾¥Ò¶Í¼¿ÉµÃ$S_¼×^2£¾S_ÒÒ^2$£»
£¨¢ò£©ÓÉÌâ¿ÉÖª$A=\{y|y¡Ý-\frac{1}{2}\}$£¬$B=\{x|-\sqrt{1-m}¡Üx¡Ü\sqrt{1-m}\}$£¬ÓÉÓÚpÊÇqµÄ±ØÒªÌõ¼þ£¬¿ÉµÃB⊆A£¬´Ó¶ø½â²»µÈʽ¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨¢ñ£©¹Û²ì¾¥Ò¶Í¼¿ÉµÃ$S_¼×^2$£¾$S_ÒÒ^2$£»
£¨¢ò£©ÓÉÌâ¿ÉÖª$A=\{y|y¡Ý-\frac{1}{2}\}$£¬$B=\{x|-\sqrt{1-m}¡Üx¡Ü\sqrt{1-m}\}$
ÓÉÓÚpÊÇqµÄ±ØÒªÌõ¼þ£¬¡àB⊆A£¬
¡à$-\sqrt{1-m}¡Ý-\frac{1}{2}$£¬½âµÃ$m¡Ý\frac{3}{4}$£¬×ÛÉÏËùÊö£º$\frac{3}{4}¡Üm£¼1$£®
µãÆÀ ±¾Ì⿼²éÁ˾¥Ò¶Í¼ÒÔ¼°±ØÒªÌõ¼þ¡¢³ä·ÖÌõ¼þÓë³äÒªÌõ¼þµÄÅж¨£¬¿¼²éÁ˲»µÈʽµÄ½â·¨£¬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®ÏÂÁи÷¸ö½ÇÖÐÓë2017¡ãÖÕ±ßÏàͬµÄÊÇ£¨¡¡¡¡£©
| A£® | -147¡ã | B£® | 677¡ã | C£® | 317¡ã | D£® | 217¡ã |
13£®
ÒÑÖªº¯Êýf£¨x£©=x3+bx2+cx+dµÄͼÏóÈçͼ£¬Ôòº¯Êý$y={log_2}£¨{x^2}+\frac{2}{3}bx+\frac{c}{3}£©$µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬-2£© | B£® | £¨-¡Þ£¬1£© | C£® | £¨-2£¬4£© | D£® | £¨1£¬+¡Þ£© |
10£®ÔÚ¼«×ø±êϵÖУ¬µã£¨2£¬$\frac{¦Ð}{3}$£©µ½Ö±ÏߦÑcos¦È=2µÄ¾àÀëΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | 1 | C£® | 2 | D£® | 3 |
19£®Ä³·þ×°µê¾ÓªÄ³ÖÖ·þ×°£¬ÔÚijÖÜÄÚ»ñÀûÈóy£¨Ôª£©Óë¸ÃÖÜÿÌìÏúÊÛÕâÖÖ·þ×°¼þÊýxÖ®¼äÊý¾Ý¹ØÏµ¼û±í£»
ÒÑÖª$\sum_{i=1}^7{{x_i}^2}$=280£¬$\sum_{i=1}^7{{y_i}^2}=45309$£¬$\sum_{i=1}^7{{x_i}{y_i}}=3487$ÏßÐԻع鷽³Ì£¬
£¨1£©Çó$\overline{x}$£¬$\overline{y}$£»
£¨2£©»³öÉ¢µãͼ£»
£¨3£©Çó´¿ÀûÈóyÓëÿÌìÏúÊÛ¼þÊýxÖ®¼äµÄ»Ø¹éÖ±Ïß·½³Ì£®
$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{{y}_{i}}$=a+bx£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®
| x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
£¨1£©Çó$\overline{x}$£¬$\overline{y}$£»
£¨2£©»³öÉ¢µãͼ£»
£¨3£©Çó´¿ÀûÈóyÓëÿÌìÏúÊÛ¼þÊýxÖ®¼äµÄ»Ø¹éÖ±Ïß·½³Ì£®
$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{{y}_{i}}$=a+bx£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®