题目内容
13.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为( )| A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
分析 确定基本事件的个数,即可求出概率.
解答 解:随机选派2人参加象棋比赛,有${C}_{5}^{2}$=10种,选出的2人中恰有1人是女队员,有${C}_{2}^{1}{C}_{3}^{1}$=6种,
∴所求概率为$\frac{6}{10}$=$\frac{3}{5}$,
故选C.
点评 本题考查古典概型,考查概率的计算,确定基本事件的个数是关键.
练习册系列答案
相关题目
1.若x,y满足:$\left\{\begin{array}{l}{x+2y-19≥0}\\{x-y+8≥0}\\{2x+y-14≤0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值与最小值之和为( )
| A. | $\frac{25}{4}$ | B. | $\frac{27}{4}$ | C. | $\frac{29}{4}$ | D. | $\frac{31}{4}$ |
11.已知F为抛物线4y2=x的焦点,点A,B都是抛物线上的点且位于x轴的两侧,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=15(O为原点),则△ABO和△AFO的面积之和的最小值为( )
| A. | $\frac{1}{8}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\frac{\sqrt{5}}{4}$ | D. | $\frac{\sqrt{65}}{2}$ |