题目内容
16.某四棱锥和球的组合体的三视图如图所示,则该组合体的体积是$\frac{8+4π}{3}$分析 由三视图可得该组合体为上面为球,下面为正四棱锥组成,球的半径为1,正四棱锥的底面边长为2,高为2,运用球的体积公式和棱锥的体积公式,计算即可得到所求.
解答
解:该组合体由上面为球,下面为正四棱锥组成,
球的半径为1,正四棱锥的底面边长为2,高为2,
则该组合体的体积是$\frac{4}{3}$π•13+$\frac{1}{3}$•22•2=$\frac{8+4π}{3}$.
故答案为:$\frac{8+4π}{3}$.
点评 本题考查组合体的体积的求法,注意运用球的体积公式和棱锥的体积公式,由三视图正确还原几何体的直观图是解题的关键.
练习册系列答案
相关题目
4.若$sinα+3sin(\frac{π}{2}+α)=0$,则cos2α的值为( )
| A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
11.“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;
(Ⅲ)若从此样本中的A城市和B城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自B城市的概率是多少?
附:参考数据:
(参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)
(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;
| A | B | 合计 | |
| 认可 | |||
| 不认可 | |||
| 合计 |
附:参考数据:
(参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)
1.已知函数f(x)=sinx+cosx,g(x)=2cosx,动直线x=t与f(x)和g(x)的图象分别交于A、B两点,则|AB|的取值范围是( )
| A. | [0,1] | B. | [0,$\sqrt{2}$] | C. | [0,2] | D. | [1,$\sqrt{2}$] |
5.现有A,B两门选修课供甲、乙、丙三人随机选择,每人必须且只能选其中一门,则甲乙两人都选A选修课的概率是( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
20.A={x|y=lg(x-1)},$B=\left\{{y\left|{y=\sqrt{4-{x^2}}}\right.}\right\}$,则A∩B=( )
| A. | [0,2] | B. | (1,2] | C. | [1,2) | D. | (1,4] |