题目内容

14.抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,O为坐标原点.若|AF|=3,且△AOB的面积为$\frac{{3\sqrt{2}}}{2}$,则点B的纵坐标为(  )
A.±1B.$±\frac{{\sqrt{2}}}{2}$C.$±\sqrt{2}$D.$±\frac{1}{2}$

分析 利用抛物线的性质求出A的坐标,通过三角形的面积求解即可.

解答 解:由题意可知:OF=1,|AF|=3,可得xA=2,代入抛物线方程,不妨令A在x轴上方,
解得yA=2$\sqrt{2}$,△AOB的面积为$\frac{{3\sqrt{2}}}{2}$,
可得$\frac{1}{2}×1×|{y}_{A}-{y}_{B}|$=$\frac{3\sqrt{2}}{2}$,yA-yB=3$\sqrt{2}$,yB=-$\sqrt{2}$.
同理可得yB=$\sqrt{2}$.
故选:C.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网