题目内容

2.已知点F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点,点E是该双曲线的右焦点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是直角三角形,则该双曲线的离心率为1+$\sqrt{2}$.

分析 利用双曲线的对称性及直角三角形,可得∠AEF=45°,从而|AF|=|EF|,求出|AF|,|EF|,得到关于a,b,c的等式,即可求出离心率的值和渐近线方程.

解答 解:∵△ABE是直角三角形,∴∠AEB为直角,
∵双曲线关于x轴对称,且直线AB垂直x轴,
∴∠AEF=∠BEF=45°,
∴|AF|=|EF|,
∵F为左焦点,设其坐标为(-c,0),
令x=-c,则$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
则有y=±$\frac{{b}^{2}}{a}$,
∴|AF|=$\frac{{b}^{2}}{a}$,∴|EF|=2c,
∴$\frac{{b}^{2}}{a}$=2c
∴b2=2ac,
即c2-a2=2ac,
即∴e2-2e-1=0,
∵e>1,∴e=1+$\sqrt{2}$,
故答案为:1+$\sqrt{2}$.

点评 本题考查双曲线的对称性、考查双曲线的三参数关系:c2=a2+b2、考查双曲线的离心率和渐近线方程,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网