题目内容

19.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1、F2,P为双曲线右支上一点,点Q的坐标为(-2,3),则|PQ|+|PF1|的最小值为7.

分析 依题意,可求得F1(-4,0),F2(4,0),P在双曲线的右支上,利用双曲线的定义|PF1|-|PF2|=4,可求得|PF1|=|PF2|+4,从而可求得|PF1|+|PQ|的最小值.

解答 解:由双曲线方程得a=1,c=2
∵P在双曲线的右支上,
∴|PF1|-|PF2|=2,
∴|PF1|=|PF2|+2,
又双曲线右焦点F2(2,0),
∴|PF1|+|PQ|=|PF2|+4+|PQ|≥|QF2|+2
=$\sqrt{(-2-2)^{2}+{3}^{2}}$+2═5+2=7,(当且仅当Q、P、F2三点共线时取“=”).
则|PQ|+|PF1|的最小值为7.
故答案为:7.

点评 本题考查双曲线的简单性质,利用双曲线的定义将|PF1|转化为|PF2|+2是关键,考查转化思想与应用不等式的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网