题目内容

已知sinθ=-
2
5
5
.其中θ是第三象限角.
(Ⅰ)求cosθ,tanθ的值;
(Ⅱ)求tan(θ-
π
4
)的值;
(Ⅲ)求sin(θ+
π
2
)-2sin(π+θ)+cos2θ的值.
考点:运用诱导公式化简求值,同角三角函数基本关系的运用,两角和与差的正切函数
专题:计算题,三角函数的求值
分析:(Ⅰ)由同角三角函数基本关系先求cosθ,即可求tanθ的值;
(Ⅱ)由(Ⅰ)及两角和与差的正切函数公式即可求值;
( III)由诱导公式及倍角公式展开代入即可求值.
解答: (本小题满分14分)
解:(Ⅰ)∵sinθ=-
2
5
5
且θ是第三象限角,
cosθ=-
1-sin2θ
=-
5
5
.----------------(2分)
tanθ=
sinθ
cosθ
=2
.----------------(4分)
(Ⅱ)由(Ⅰ),tan(θ-
π
4
)=
tanθ-tan
π
4
1+tanθ•tan
π
4
----------------(6分)
=
2-1
1+2×1
=
1
3
.----------------(9分)
( III)sin(θ+
π
2
)-2sin(π+θ)+cos2θ
=cosθ+2sinθ+2cos2θ-1----------------(12分)
=-
5
5
+2(-
2
5
5
)+2(-
5
5
)2-1
=-
5
-
3
5
.----------------(14分)
点评:本题主要考查了同角三角函数基本关系的运用,两角和与差的正切函数公式的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网