题目内容

如图,A是半径为5的圆O上的一个定点,单位向量
AB
在A点处与圆O相切,点P是圆O上的一个动点,且点P与点A不重合,则
AP
AB
的取值范围是(  )
A、(-5,5)
B、[-5,5]
C、(-
5
2
5
2
)
D、[0,5]
考点:平面向量数量积的运算
专题:平面向量及应用
分析:如图所示:设∠PAB=θ,作OM⊥AP,则∠AOM=θ,求得AP=2AM=10sinθ,可得
AP
AB
=10sinθ×1×cosθ=5sin2θ,由此求得
AP
AB
的取值范围.
解答: 解:如图所示:设∠PAB=θ,作OM⊥AP,则∠AOM=θ,
∴sinθ=
AM
OA
,AM=5sinθ,AP=2AM=10sinθ.
AP
AB
=10sinθ×1×cosθ=5sin2θ∈[-5,5].
故选B.
点评:本题主要考查了向量的数量积的定义,弦切角定理及三角函数的定义的综合应用,试题具有一定的灵活性,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网