题目内容

3.若x,y满足$\left\{\begin{array}{l}{x+y≤4}\\{x-2y≥0}\\{x+2y≥4}\end{array}\right.$,则z=2x+y的最小值是(  )
A.$\frac{20}{3}$B.8C.$\frac{14}{3}$D.5

分析 画出满足约束条件的可行域,利用目标函数的几何意义,判断目标函数经过的点,可得最优解.

解答 解:满足约束条件$\left\{\begin{array}{l}{x+y≤4}\\{x-2y≥0}\\{x+2y≥4}\end{array}\right.$的可行域如下图所示:
∵目标函数z=2x+y,平移目标函数,当目标函数经过可行域的点A时,取得最小值.$\left\{\begin{array}{l}{x-2y=0}\\{x+2y=4}\end{array}\right.$,可得A(2,1)
故在A(2,1)处目标函数达到最小值:5.
故选:D.

点评 本题考查的知识点是简单线性规划,掌握目标函数的几何意义,熟练掌握其解答过程和步骤是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网