题目内容
过抛物线y2=4x的焦点F的直线l交于抛物线于A,B两点,若AB中点M到抛物线的准线距离为6,则线段AB的长为 .
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离.
解答:
解:抛物线y2=4x的焦点坐标(1,0),p=2.
设A(x1,y1) B(x2,y2)
抛物y2=4x的线准线x=-1,线段AB中点到抛物线的准线方程的距离为6,
(x1+x2)=5,
∴x1+x2=10
∴|AB|=|AF|+|BF|=x1+x2+p=10+2=12,
故答案为:12.
设A(x1,y1) B(x2,y2)
抛物y2=4x的线准线x=-1,线段AB中点到抛物线的准线方程的距离为6,
| 1 |
| 2 |
∴x1+x2=10
∴|AB|=|AF|+|BF|=x1+x2+p=10+2=12,
故答案为:12.
点评:本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
练习册系列答案
相关题目
己知命题p:“a>b”是“2a>2b”的充要条件;q:?x∈R,|x+l|≤x,则( )
| A、¬p∨q为真命题 |
| B、p∧¬q为假命题 |
| C、p∧q为真命题 |
| D、p∨q为真命题 |
设F1、F2为椭圆C:
+
=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=( )
| x2 |
| a2 |
| y2 |
| b2 |
A、2-
| ||
B、3-
| ||
C、11-6
| ||
D、9-6
|