题目内容

设F1、F2为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=(  )
A、2-
3
B、3-
2
C、11-6
3
D、9-6
2
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:可设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=
2
m,再由椭圆的定义和周长的求法,可得m,再由勾股定理,可得a,c的方程,运用离心率公式计算即可得到.
解答: 解:可设|F1F2|=2c,|AF1|=m,
若△ABF1构成以A为直角顶点的等腰直角三角形,
则|AB|=|AF1|=m,|BF1|=
2
m,
由椭圆的定义可得△ABF1的周长为4a,
即有4a=2m+
2
m,即m=2(2-
2
)a,
则|AF2|=2a-m=(2
2
-2
)a,
在直角三角形AF1F2中,
|F1F2|2=|AF1|2+|AF2|2
即4c2=4(2-
2
2a2+4(
2
-1
2a2
即有c2=(9-6
2
)a2
即有e2=
c2
a2
=9-6
2

故选D.
点评:本题考查椭圆的定义、方程和性质,主要考查离心率的求法,同时考查勾股定理的运用,灵活运用椭圆的定义是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网